الدورة التدريبية القومية
لتشخيص أمراض الحيوان الفيروسية والبكتيرية

جمهورية مصر العربية

يناير (كانون ثان) 2001

الخرطوم
الدورة التدريبية القومية
لتشخيص أمراض الحيوان الفيرو ...

جمهورية مصر العربية
القاهرة: 19-11-2000

يناير (كانون ثان) 2001

الخزفطم
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

التقدم
تقرير

بُحت قطاع الثروة الحيوانية أهمية خاصة ويحظى بإهتمام كبير لدى الأقطار العربية

إطلاقاً من أهمية его الاقتصادية واعتماد معظم السكان الزراعيين في المنطقة بشكل

أساسي على تربية الحيوان كمصدر للدخل والعمل وأسلوب للحياة.

وعلى الرغم من هذه الأهمية التي يحظى عليها قطاع الثروة الحيوانية والكم الهائل

لأعدادها في الوطن العربي، إلا أن ضعف الإنتاجية بسبب إعتماد هذا القطاع بصفة

أساسية على النظام الزراعي التقليدي، حيث نُظم تربية الحيوان مازالت دون المستوى

المطلوب وبحاجة إلى الإرتقاء بقدراتها والإرتفاع بمعدّاتها، نتيجة لمجموعة من

العوامل كالنقص الكمي والنوعي للموارد اللفية وضعف التراكب الوراثي لسلالات الثروة

الحيوانية المحلية. هذا إلى جانب أمراض الحيوان - الواقفة والمُستوطنة - وبخاصة

الأمراض الفيروسية والبكتيرية، التي أشرت وقد يُشَد واثبَتُها مُستقبلاً - على نحو مُباشر -

في التفوق ومُعَدَّل الولادات والاستبِدا للنمو والتكيف الجنسي وضعف الإصبار وغيرها

من المُؤثّرات والإنعكاسات السلبية الأخرى على صحة الحيوان، والتي قد تتفحّك في أحيان

كثيرة على صحة الإنسان والبيئة العامة المُحيطة به.

ومن الأهمية يمكن أن تحتل رعاية الثروة الحيوانية والحفاظ عليها من الأمراض الواقفة

والمُستوطنة، مساحة كبيرة في خطط وباشرات تجريب هذه الثروة في الوطن العربي.

ولقد قامت المنظمة العربية للتنمية الزراعية بإجراء العديد من الدراسات حول أمراض

وصحة الحيوان، حيث أشارت نتائج دراساتها التي أجرتها في هذا المجال - كدراسة

القومية للأمراض الحيوان في الوطن العربي - ودراسة وضع المُختبرات البيطرية، ودراسة

حصر قوائم وواجت الحجر البيطري في الدول العربية، ودراسة إنتاج الفلاحات البيطرية

وغيرها من الدراسات - إلى ضرورة العمل على مكافحة الأمراض ومغرارة شروط الحجر

البيطري والسلامة العالمية للإنسان والحيوان، وتلقي دخل الأمراض الواقفة غير

المعرفة في المنطقة العربية.

وإستمراراً لجهودها المبذولة في هذا المجال، أرجعت المنظمة العربية للتنمية الزراعية

في خطة عملها لعام 2000، مشروعًا قوميًا لنشر التقنيات الحديثة في مجال تشخيص
الدورة التدريبية القومية تشخيص أمراض الحيوان الفيروسية والبكتيرية

أمراض الحيوان الفيروسية والبكتيرية، ويتم تنفيذ هذا المشروع على مرحلتين - تتمثل المرحلة الأولى في إعداد دراسة قومية شاملة حول التقنيات الحديثة المستخدمة على المستوى العالمي في مجال تشخيص الأمراض الحيوانية البكتيرية والفيروسية والتحقق من ملاءمتها للظروف المحلية ودراسة إمكانية استخدامها في المنطقة العربية، فيما تتمثل المرحلة الثانية من مراحل تنفيذ ذلك المشروع القومي الهام في عقد هذه الدورة التدريبية القومية.

والمؤسسة إذ تقدم مادة هذه الدورة للباحثين والدروسين العرب، تأمل أن يجدوا فيها ما يحتاجونه من المعارف التطبيقية في هذا المجال الحيوي الهام.

والله نسأل التوفيق "

المدير العام

الدكتور عيدي بكروم
المحتويات
<table>
<thead>
<tr>
<th>المحتويات</th>
</tr>
</thead>
<tbody>
<tr>
<td>المتقدم</td>
</tr>
<tr>
<td>المحتويات</td>
</tr>
<tr>
<td>1- التشخيص المجهرى الفيروسى (الميكروسكوب الفلورستي - الميكروسكوب الإلكترونى - نكيرية)</td>
</tr>
<tr>
<td>2- عزل الميكروبات بواسطة حيوانات المعمل - 1. د. محمد حسن خضير احمد</td>
</tr>
<tr>
<td>3- الرازعة في الأنسجة الحية للفيروسات - 1. د. محمد احمد معاذ</td>
</tr>
<tr>
<td>4- التشخيص المجهرى الفيروسى - نكيريرية عمالة</td>
</tr>
<tr>
<td>5- استعمال الصبغات المختلفة في التعرف على التأثير المرضى للفيروسات في المزارين النسيجية -</td>
</tr>
<tr>
<td>6- التشخيص المجهرى البكتيرى - 1. د. ساهر مكين جرجس</td>
</tr>
<tr>
<td>7- استخدام المجهر في بعض الاختبارات الفيروسية - 1. د. عادل محمد حسن عزب</td>
</tr>
<tr>
<td>8- اختبارات التفاعل - 1... د. عزيز ميخائيل إسحق</td>
</tr>
<tr>
<td>9- استعمال المجهر للتعرف على البدائل - 1. د. حسام جمال الدين، إسماعيل</td>
</tr>
<tr>
<td>10- اختبار القابلية للتفاعل على البدائل - 1. د. سهيل سعيد طه</td>
</tr>
<tr>
<td>11- اختبار انتقال المصل - 1. د. سهيل مرسي</td>
</tr>
<tr>
<td>12- نتائج مسابر (كراشف) للإحصاء التحفيزى - 1. د. علاء الخولي</td>
</tr>
<tr>
<td>13- تحميل الجينات على حوالى لاستخدامها في إنتاج مستحضرات تشخيصية في الاختبارات المعملية</td>
</tr>
<tr>
<td>14- 1. د. سهيل عبدالمجيد الزيدى</td>
</tr>
<tr>
<td>15- إنتاج الأحماض المتاحة بحجة النوع والصفة - 1. د. رقية محمد عثمان</td>
</tr>
<tr>
<td>16- إختبار الميكرو المثبت - 1. د. سهيلة عبد السلام الكيلاني</td>
</tr>
<tr>
<td>17- طرق مختلفة لعزل الفيروسات على البيض المخصب - 1. د. فكيرة البريدي</td>
</tr>
<tr>
<td>18- استخدام تقنية الالزى - 1. د. سهيل محمد سليمان</td>
</tr>
<tr>
<td>19- الاختبارات العملية المستخدمة في تشخيص الأمراض البكتيرى والفيروسية - إختبار التراص</td>
</tr>
<tr>
<td>20- إختبار التلازيم الدموى ومعالجات التلازيم الدموى - 1. د. سامى الاسماعلى</td>
</tr>
<tr>
<td>21- اختبارات الحساسية لتضخيم بعض الأمراض الجرثومية - 1. د. دانيال جندي ميخائيل</td>
</tr>
<tr>
<td>22- إختبار الجونين - 1. د. رائد عزى ديمتري</td>
</tr>
<tr>
<td>كلامات الافتتاح</td>
</tr>
<tr>
<td>أسماء المشاركين</td>
</tr>
</tbody>
</table>
التشخيص المجهري الفيروسي
الميكروسكوب الفلورسنتي
الميكروسكوب الإلكتروني
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

التشخيص المجهرى الفيروسي
(الميكروسكوب الفلورستي - الميكروسكوب الإلكتروني)

إعداد
د. سامية عبد الله عطية عياد
باحث أول
قسم بحوث الطاعون البقري - مركز البحوث الزراعية
جمهورية مصر العربية

الميكروسكوب الإلكتروني :

مقدمة :

- استخدام الميكروسكوب الإلكتروني في الدراسات الفيروسية ليس بحديث العهد.
 فقد كان ذلك منذ حوالي 50 عاماً.

- لجأ العلماء لهذا الميكروسكوب من أجل تحديد وجود فيروس معين في عينة تحت الفحص من عدمه، وذلك مهما كان تركيز هذا الفيروس حتى لو كان فيروس واحد فقط. ويعتبر تحديد وجود هذا الفيروس بمثابة تشخيص لجهاز فيه، وتحديد نهائي لإصابة كائن معين بحراص معين، خاصة مع وجود أصابة فيروسية يصعب عزل المسبب المرضي لها على المزارع التقليدية.

- لجأ العلماء كذلك لهذا الميكروسكوب في إجراء درايات مستفيضة عن تركيب الفيروسات المختلفة مهما كانت متاحة في الصغر (10 ميكرون مثلاً) وذلك للقوة البكتيرية الهائلة له، مما كان له أكبر الامر في التفاعل مع هذه الفيروسات بصورة أكثر دقة مكتبت العالم من انتاج لقاحات عديدة كان لها أكبر الامر في التغلب على كثير من الامراض الفيروسية.

- إضافة أجسام مضادة معينة للعينة تحت الفحص ساعد كثيرا في تركز عدد الفيروسات في العينة كما أنها تحديد لهوية هذا الفيروس أي أنها وسيلة للتعرف
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

عليه، كما هو الحال في تحديد فيروس الروتا - والانتشار السطحي لفيروس التهاب الكبد الوبائي (B) من عينة سيرم لمريض تحت الفحص.

تطوير العمل:

في البداية كان الفحص الإلكتروني للعينات يستغرق الكثير من الوقت كما كان شاقا جدا ومكلف. ولكن حاليا أدخلت عليه بعض التعديلات جعلت منه أقل تكلفة ومجهودا وجعلته منه اختيارياً ضرورياً في بعض حالات التشخيص التي يصعب فيها عملية زراعة وتنمية الفيروسات على أنواع المزرع النسيجية كما ذكرنا من قبل.

لماذا سمي بالميكروسكوب الإلكتروني؟

لأننا نستخدم فيه شعاع مكثف من الإلكترونات لها خاصية المرور من الكثافة الإلكترونية المنخفضة للفيروسات ولا يمر من الكثافة الإلكترونية العالية لوسط المحيط والذي غالبا ما يستخدم فيها أبوات لمعادن ثقيلة تستهلك عنها فيما بعد.

تركيب مبسط للميكروسكوب الإلكتروني:

(انظر الشكل 1).

طريقة التشغيل:

* هناك طريقوتان أساسيتان:
 - أو الصبغة السلبية Negative Staining
 - أو المقاطع الريفية The thin Sectioning of Virus infected cells

للخلايا المصابة بالفيروسات.

والآن بشيء من التفصيل:

1 - طريقة الصبغة السلبية

هي أسرع وأفصح طريقة لتحديد والتعرف على الفيروسات.

تستخدم فيها أملاح معدن ثقيلة وذلك لتحديد أو تضاد بين الفيروس Contrast والوسط المحيط.
الخطوات:

1- أخلط حجمين متساويتين من العينة المفرز، أولا ثلاثة للدوبس وملح
Potassium phospho- 2/4 يكم. أو/2 Anurylaceatate يكم. التورستيد الصغيرة
2- أغماس ماصة قليلاً في عينة حاوية على PTA، ليب حسب أن الدوبس
المغطى بالفيتامين المكون من Formvar سوف يخلو فوق سطح
يسهل عملية تخيل الصيغة في الداخل العينة.
3- ضع الخاص بالميزوكروسكوب الإلكتروني فوق الغشاء.
4- التحقق من الطاقة المغذية المعدنية. الأن العينة جاهزة للفحص
الميزوكروسكوب.

(انظر شكل 2.)

الخطوات:

1- ضع مكعب من الآبار 1-2% على شريحة ميزيوكروسكوب عادية ثم يضيف نقطة
 صغيرة من محلول المحتوى على الفيروس.
2- ضع 2-1 فوق العينة تحت الفيروسة والتي عقبها فوق مكعب الآبار، أقلب
رأسا على عقب ثم أترك حتى يختبر السائل داخل الآبار ثم يحف.
3- المحلول المركز حالياً يحتوي على الفيروس وأصبح متغري بالـ E.M. Grids
التي هذا E.M. Grids وأغلب ملتصق بالـ PTA للتمدد هذا E.M. Grids
التي هذا E.M. Grids وأغلب ملتصق بالـ PTA للتمدد هذا E.M. Grids
1-2 دقيقة، ثم بإزالة الزائدة في الصيغة ثم أفحص الميزيوكروسكوب الإلكتروني.
(انظر شكل 3.)
STEP 1

STEP 2

STEP 3

Figure 2. Scheme for pseudoreplica method for preparing specimen for EM examination.

Figure 3. Scheme for agar-diffusion-filtration method for preparing specimen for EM examination.
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

: Immunoelectron microscopy (IEM) (ج)

هذه الطريقة بالإضافة إلى أنها تركز الفيروسات في العينة المراد فحصها فهي أيضاً تستخدم للتشخيص السريع للفيروس الموجود وذلك باستخدام.

الخطوات:

1- أخلط العينة تحت الفحص مع الأجسام المضادة بتركيز 1:10 أو 100:1 أتركها لمدة 1/2 - 1 ساعة في درجة حرارة الغرفة حتى تتكون اتحادية الفيروس - إذا وجد فالاجسام المضادة الخاصة به.

2- ضعها في جهاز الطرد المركزي عند 15000 دورة في الدقيقة 2/3 ساعة.

3- خذ الراسب وأعد إذابته في كمية قليلة جداً من الماء المقطور ثم خذ نقطة منه مع PTA نقطة مماثلة من 4/3.

4- إستخدم Farmvar المغطاة بال E.M.grid الميكروسكوب.

(انظر شكل 4).

: The-sectioning method

2- طريقة الشرائح الرقيقة

* تستخدم هذه الطريقة لتحضير شرائح ثابثة من الخلايا أو الانسجة المصابة تكون جاهزة للفحص بالميكروسكوب الإلكتروني وذلك بغرض:

- اكتشاف وجود فيروس معين.
- التفاعل أو العلاقة أو التداخل الفيروسي والخلية.
- تحديد أماكن تكاثر الفيروسات.
- تحديد أي طفرة قد تحدث في الخلايا المصابة.
Chapter 29. Serologic Diagnosis & Immunologic Detection of Virus Infections

Figure 1. Electron micrographs of 27-nm hepatitis A virus (HAV). A: HAV particles not treated with antibody, demonstrating the presence of corelike structures (222,000 x). B: HAV particles aggregated with antibody (222,000 x). Note the presence of an antibody "halo" around each particle. (Bradley, Hornbeck, & Maynard.)
الخطوات:

1. تتبث الأنسجة المصابة بواسطة glutaraldehyde 2% وذلك لمدة ساعة عند درجة 4°C ثم تكحث الأنسجة ويتم ترتيبها بواسطة جهاز نظامي. يتم تجميع هذه الأنسجة في مكعبات حيث يتم تقطيعها إلى قطع صغيرة جدا. Coco dylate buffer 1مM ثم تغسل بواسطة لمدة 4 Osmium collision 1.33% ساعات عند 4°C.

2. التثبيت يتم بوضع الأنسجة في uranyl acetate 1/2% لمدة 4 ساعات عند 4°C.

3. أصبغ بواسطة لمدة 4 ساعات عند 4°C.

4. أسحب الماء بواسطة الكحول الأثلي بالتركيزات الآتية: 50%, 70%, 80%, 90%, 100%, 3 مرات لكل تركيز.

5. أضيف محلول حديث التحضير ثم أتركها ساعة واحدة في درجة حرارة Epon و ذلك لحدوث عملية Polymerization البكرة لمدة 48 ساعة عند 60°C. ثم أزيل الزياضات من Epon وذلك لسرعة الوصول للعينة.

6. قم بتقطيع العينة إلى شتى شرائح رقيقة جدا وذلك بواسطة Diamond Knives المائة.

7. توضع الشرائح على mi. grid ثم أصبغها كما سابق وأفحص تحت المجهرة. (أفضل شكل 5).
Figure 5. Relative size and shape of RNA viruses as revealed in negatively stained preparations (top row), in thin-sectioned cells (middle row), and as compared with schematic diagrams (bottom row) (G. D. Hsiung et al., Prog. Med. Virology 25: 155, 1979).
عزل الميكروبات
بواسطة
حيوانات المعمل
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

عزل الميكروبات بواسطة حيوانات المعمل

إعداد

أ.د. محمد حسن خضير أحمد
رئيس بحوث بمعهد بحوث الأمصال واللقاحات البيطرية
العابيسية - القاهرة

مقدمة:

إن الغالبية العظمى من البحوث الوبائية تعتمد على الحيوانات مشتقة صغيرة منها والكبيرة، ولقد كانت حيوانات التجارب مهملة في الماضي ولكنها تعتبر الآن من الفصائل ذات الأهمية الكبرى.

والحصول على حيوانات تجارب نتية الفصيلة والبالية من الأمراض يجب الاهتمام بطرق اختيار السلالات الجديدة وطرق التربية والعناية بها، هذا ويفضل تقسيم حيوانات التجارب من حيث الحجم إلى:

1- حيوانات صغيرة وتشمل: الفأر الأبيض الصغير والفأر الأبيض الكبير والأنزل العربي والأرنب الهندي والأرنب المستأنس والبرموض والدجاج والحمام والأزه.
2- حيوانات كبيرة وتشمل: الخيل والأبقار والأغنام والقرود والكلاب والقطط.

أما عن إستخدامات حيوانات التجارب فنجد أنها تشمل:

1- التطبيقات الطبية لتشخيص وإثبات أو نفي الحمل ومعايرة اللقاحات والأصصال.
2- البحوث الفسيولوجية واللوبانية والميكروبية.
3- بحوث الفضاء.
عزل الميكروبات بواسطة حيوانات المعمل:

هناك الكثير من الأمور الهامة التي يجب التحدث عنها قبل الحديث عن عزل الميكروبات.

أولاً: الحالة الصحية للعاملين في هذا المجال:

1- يجب العمل والحرص على عدم إنتقال العدوى من الحيوانات المتعامل معه والعكس وذلك بمراعاة إتباع النواحي الصحية العامة والخاصة.

2- يجب أن يكون التعاون مع حيوانات المعمل قوي الملاحظة حتى يرقب المريض أو المصاب منها وإستبعاده.

3- يجب الكشف الدوري على العاملين (خاصة الصدر والجلد والعيون).

4- يجب تحصين العاملين باللقاحات المناسبة حسب الأمراض التي يتعرضون لها مثل الكلب والسل والجدري والتيفانوس وحمى الوادي المتصدع.

ثانياً: طرق التعاون والإمساك ببعض حيوانات المعمل:

يجب أن تتعامل حيوانات المعمل بالرحمة والشفقة في مسكتها أو عند نقلها من مكان آخر حتى عند التخلص منها يجب أن يكون قتله بطريقة رحيمة تتفق مع نوع وحجم وعدد الحيوانات ثم التخلص من جثثها بطريقة صحيحة وأمنة، لكل حيوان طريقه الإمساك به بحيث لا تضر به ولا تعرض الممسك به للمعثر أو الخدش بالأظافر كما هو موضح في الصور التالية.
طريقة مسك بعض الحيوانات المعملية
ثالثاً: بعض النصائح الخاصة بمختبرات ال mikrobit وات:
1- يمنع دخول كل من ليس له علاقة بالمختبر.
2- يمنع منعاً باتاً الأكل والشرب والتدخين.
3- إرتداء معاطف بيضاء نظيفة تعقم بإستمرار.
4- عدم فتح أي مزرعة ميكروبية منعا للتلود إلا بمعاية المختص.
5- في حالة وجود جروح بالأيدي أو الوجه يمنع التعامل مع الميكروبات حتى تمام الإلتئام.
6- يجب تنظيف وتتلميف المختبر وتعقيمته بصفة دورية وخاصة بعد كل تعامل مع الميكروبات.

رابعاً: بعض طرق الحقن في حيوانات المعمل لعزل بعض الميكروبات:
هناك طرق مختلفة للحقن في حيوانات التجارب تتناسب إلى حد كبير مع نوع الميكروب المختبر والمراد التعرف عليه والتقتض من هويته كما أن نوع وحجم الإبرة المستخدمة في الحقن يختلف طبقاً لطريقة الحقن وحجم الحيوان الذي يراد حقنه كما هو موضح بالصور.
الحقن عن طريق الفم في الفأر

الحقن تحت الجلد في الفأر
الحنق في العضل في الفأر

الحنق في الوريد في الفأر
الحقن في الوريد في الأرنب الهندي

الحقن عن طريق الفم في القط
الحقن بتحويل البطن بالقط

الحقن بالوريد في الحمام
<table>
<thead>
<tr>
<th>الحيوان</th>
<th>الفيروس</th>
<th>طريقة الحقن</th>
<th>ملاحظات</th>
</tr>
</thead>
<tbody>
<tr>
<td>الأرنب الهندي (خنير غنيا)</td>
<td>الحمي القلاعية</td>
<td>في الدماغ</td>
<td>فاز أبيض صغير داء الكلب - طاعون الخيل - حمى الوادي المتصدع - حمى الثلاثة أيام</td>
</tr>
<tr>
<td>الأرنب المستثنى (الفيروسات التنفسية وديستيرم الكلاب - حصبة الكلاب)</td>
<td>الالتهاب في المخ</td>
<td>عن طريق الأنف</td>
<td>الانفلونزا وفيروسات الالتهاب الرئوي وراث - عضل - تحت الجلد</td>
</tr>
<tr>
<td>البقر</td>
<td>البريول</td>
<td>بالدماغ</td>
<td>أعراض تنفسية وعصبية</td>
</tr>
<tr>
<td>الجماجم</td>
<td>الداء</td>
<td>بالدماغ أو تحت الجلد</td>
<td>أعراض عصبية بالمخ - الكلب الكاذب</td>
</tr>
<tr>
<td>المرسية</td>
<td>الفيروسات التنفسية والبيئية</td>
<td>بالأنف أو بالمخ</td>
<td>أعراض تنفسية وعصبية</td>
</tr>
<tr>
<td>البقر</td>
<td>البياري</td>
<td>بالدماغ</td>
<td>مشاكل ودمار قلبي والجلد</td>
</tr>
<tr>
<td>ملاحظات</td>
<td>طريقة الحقن</td>
<td>الحيوان</td>
<td>اسم الميكروب</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>تخفيف البطن</td>
<td>تحت الجلد</td>
<td>الذئب</td>
<td>أرابا رنيني أوبسيس</td>
</tr>
<tr>
<td>تخفيف البطن</td>
<td>تحت الجلد أو في تجريب البطن</td>
<td>الذئب</td>
<td>سولومونس مالى (جلاديرز)</td>
</tr>
<tr>
<td>التهاب الخصي في توات بروفار</td>
<td>تحت الجلد</td>
<td>الذئب</td>
<td>سولومونس أورجينزيا</td>
</tr>
<tr>
<td>التهاب الخصي مع تتكاثر بالنمور</td>
<td>تحت الجلد</td>
<td>الذئب</td>
<td>النيكولا كابولاكار فيت (فيتيرفيتيس)</td>
</tr>
<tr>
<td>التهاب الخصي بعد 2-4 ساعات</td>
<td>تحت الجلد</td>
<td>الذئب</td>
<td>كاميلولاكار فيت (فيتيرفيتيس)</td>
</tr>
<tr>
<td>التهاب الخصي بعد 10 ساعات</td>
<td>تحت الجلد</td>
<td>الذئب</td>
<td>باستريلا ميتسبيا</td>
</tr>
<tr>
<td>التهاب الخصي بعد 18-24 ساعة</td>
<td>تحت الجلد</td>
<td>الذئب</td>
<td>باستريلا أنسرب (الحمى الحقيقية)</td>
</tr>
<tr>
<td>التهاب الخصي بعد 24-48 ساعة</td>
<td>تحت الجلد</td>
<td>الذئب</td>
<td>كاميلولاكار فيت (فيتيرفيتيس)</td>
</tr>
<tr>
<td>التهاب النموذج السريع مع تتكاثر بالنمور</td>
<td>تحت الجلد</td>
<td>الذئب</td>
<td>كاميلولاكار فيت (فيتيرفيتيس)</td>
</tr>
<tr>
<td>التهاب الخصي بعد 18-24 ساعة</td>
<td>تحت الجلد</td>
<td>الذئب</td>
<td>كاميلولاكار فيت (فيتيرفيتيس)</td>
</tr>
</tbody>
</table>
المراجع:

1- تربية ورعاية حيوانات التجارب - الطبعة الرابعة سنة 1978 - تأليف السيد عبد الوهاب سيد أحمد.

2- التشخيص الفييروسي (كتاب معمل) سنة 1991 - تأليف أ.د. محمد عبد الحميد شلبي (أستاذ الفييروسات والمناعة) - أ.د. أحمد السنوسي (أستاذ مساعد الفييروسات) - كلية الطب البيطري - جامعة القاهرة.

3- ملاحظات عملية في الميكروبيولوجيا - قسم الميكروبيولوجيا - كلية الطب البيطري - جامعة القاهرة.
بحث عن الزراعة في الأنسجة الحية للفيروسات
الزراعة في الأنسجة الحية للفيروسات

إعداد
أ. د. محمد أحمد معاذ
(رئيس بحوث متفرغ)

نبذة تاريخية:

- بدأ استخدام التزريع الخلوي على نطاق واسع في الدراسات الفيروسية إعتبارًا من أواخر الأربعينيات - وقد أستهل "إندرز" وتعاونه هذه الحقبة عام 1949 Enders

- عندما لاحظوا أنه يمكن الفيروس شلل الأطفال أن ينمو في تزريع خلوي من أنسجة خلوية ليس بالضرورة أن يكون من أنسجة عصبية - وذلك انتقى الاعتقاد الذي كان سائداً من أنه لابد وأن يكون التزريع الخلوي لا ينمو هذا الفيروس محضراً من أنسجة عصبية نظراً لطبيعته هذا الفيروس شديدة الخصوصية المتعلقة بالأنسجة العصبية عند نموه طبيعيأ (In-vivo)

- وقد أصبح من المعروف حالياً أنه يمكن لفريروسو عديدة تعصيب الإنسان - أن تنمو في مزارع خلوي محضرة من أنسجة متثبتة من أصل أدمي أو قرد

- إلا أن فيروس شلل الأطفال ناجزاً هو أحد أمثلة الفيروسات التي يمكن لها أن تنمو في نطاق ضيق نسبياً من أنواع المزارع الخلوية. وذلك بعكس بعض الفيروسات التي يمكن تثبيتها في مزارع خلوي محضرة من مصادر متنوعة - مثل فيروس الفاكسينايا الذي يمكن له أن ينمو في مزارع خلوي من أنسجة أجنحة بيض الدجاج. وقد كانت هذه المزارع الخلوي المحضرة من أنسجة أجنحة بيض الدجاج من أول المزارع التي استخدمت في إجراء الدراسات الفيروسية في بدايات حقبة استخدام الزرع النسيجي في هذه الدراسات - غير أن الأنواع السائدة استخدامها حالياً تحضر غالباً من كلي القرد وكلي

حيوانات أخرى مثل الأبقار والإبل.

- ويستخدنا حالياً وعلى نطاق واسع التزريع الخلوي المتميز باستمرار النمو cell

- وذلك في إجراء الدراسات الفيروسية المختلفة من أعمال تشخيص الأمراض lines

- بفصل الفيروسات السببية، وفي إنتاج اللقاحات الفيروسية لحيوان وكذلك الإنسان - وقد
اختبرت غالبية أنواع هذه المزارع النسيجية المتزامنة باستقرار النمو - لمدى قابلية كل نوع منها لنمو فيروسات معينة. وقد ثبت صلاحية غالبية هذه الخلايا لهذه الامراض.

*استخدام التزريع الخلوي في الدراسات الفيروولوجية:

- يستخدم التزريع الخلوي حاليا في جميع مناحي الدراسات الفيروولوجية للحيوان
- يمكن أن يقارن هذا الاستخدام واسع النطاق بما يجري استخدامه في مجال البكتيرولوجيا من حيث أطباق الأجار واتجاهات الأوساط الغذائية إذ يمثل التزريع الخلوي وسيلة فعالة واقتصادية بدرجة كبيرة فاقت استخدام حيوانات التجارب.
- بذلك صار التزريع الخلوي هو أساس التقدم العلمي الكبير الذي حدث في مجال فصل الفيروسات المسببة لامراض الحيوان، وبالتالي التعرف على هذه الفيروسات وتصنيفها وتوثيق تشخيص الأمراض المتسببة عنها وعلى التوالي من ذلك إنتاج المستحضرات البيولوجية واللقاحات التي أدت دورا رئيسيا في مجال حماية الحيوان من الأمراض. وإذا أردنا بصفة عامة - عمل حضر لمختلف أوجه التطبيقات البحثية والعلمية لما أمكن الإحاطة بجميع هذه الجوانب الهامة المتزامنة أساسا على تقنيات التزريع الخلوي ولكن نورد بعض

الامثلة لهذه الجوانب مثل:

1- فصل الفيروسات والتعرف عليها:

2- تصنيف وتقسيم الفيروسات:

3- التحليل الكمي والنوعي للعدي الفيروسية

Quantitative determination of infectivity:

4- التحليل الكمي والنوعي لمختلف أنواع الاستجابة المناعية للعدي الظاهرة والخفية في التشخيص:

Identification and quantitative determination of viral neutralizing complement fixing, and antihaemagglutinating antibodies in the diagnosis of apparent and inapparent infections.

5- إنتاج اللقاحات واختبار جودتها وفاعليتها وسلامتها وأمان استخدامها.
Epidemiological and ecological studies.

Antiviral activity

Dr. Loay D. Al-Atrash

Cytopathology

Antigen - Antibody Reactions

* عزل وتصنيف الفيروسات :

1- يتم فصل عزل الفيروسات بعمل عدوى لخلايا زرع نسيجي مناسب بنسبت ملائمة من العينة المراد فصل الفيروس منها وذلك بعد معالجتها من أي ملوثات بكتيرية أو فطرية بما هو مفترض من خطوات عمل معروفة لذلك. ثم متابعة هذا الاختبار للوصول إلى تشخيص مبكر للفيروس قيد البحث وذلك ترتيباً على :

- مصدر العينة المختبرة.

2- مدى حديث التغير البالغولوجي في الخلايا وتوقيتات ظهوره وسرعة انتشاره.

3- معيار الفيروس الناتج من تكاثره في الخلايا.

ويتأكد التشخيص بإجراء الاختبارات النوعية باستخدام الأسمال المضادة. يؤخذ في الاعتبار أن بعض الفيروسات لا تستجيب في إحداث تأثير بالغولوجي في الخلايا وفي هذه الحالات يتأكد التشخيص بإجراء اختبارات اضافية مثل اختبار Haemadsorption والاختبارات الأخرى كالاستخدام الميكروسكوب الفيروسينت Immunofluorescence والاختبارات الأخرى كاستخدام الميكروسكوب الفيروسينت واختبار التداخل الفيروسي Viral interference و اختبار التداخل المائي. و قد استخدمت خلال العقد الأخير و بعض اختبارات الالتهابات الأخرى المبنية على أساس البيولوجيا الجزيئية Molecu- PCR مثل اختبار تفاعل البلمرة التسلسلي lar biology.
بحث عن التشخيص المجهرى الفيروسي
التشخيص المجهرى الفيروسى

إعداد
د. سامية عبد الله عطية
(باحث أول)
قسم بحوث الطاعون البقرى

تقنية أجسام الضد الوميضي:

Fluorescent antibody technique (FAT)

- هو اختبار سيرولوجي لدراسة تفاعل الانتئيجين مع الجسم المضاد ويفيد هذا الاختبار في التعرف تحديداً على الانتئيجين أو أجسام الضد "Ag-Ab.react.

ويمكن تعريف الانتئيجين بأنه المستحضر البيولوجي الذي له القدرة على الالتحام بالجسم المضاد النوعي من خلال المستقبلات شديدة الخصوصية - كما يمكن تعريف أجسام الضد بأنها المستحضر البيولوجي قادر على الالتحام بالانتئيجين النوعي له.

- يعتبر هذا الاختبار من أهم الاختبارات التي تستخدم في تشخيص عدوى الاصابة الفيروسية وقد تم وصف كيفية اجراء هذا الاختبار بواسطة (كونز) عام 1941 في دراسات عن البكتيريا السببية المسببة للالتهاب الرئوي وفي عام 1954 وصف جولدمان أول تطبيق لهذا التكنولوجيا في دراسة الفيروسية ويعتبر أنها أكثر فعالية ودقة.

- ويستخدم الاختبار الآن على نطاق واسع في المختبرات الإكلينيكية ليس فقط للتعريف على نويعة المسبب المرضي ولكن أيضاً لتحديد الفصيلة أو العورة بدرجة متناوبة من دقة.

Monoclonal Antibodies

- يتطلب إتمام إجراء هذا الاختبار توافر المتطلبات الآتية:

1. أولى: تفاعل أنتئيجين مع أجسام الضد النوعية.

2. ثانى: مستحضر فلوريسين أيسوثيوسيانات

Fluorescein isothiocyanate
وهو المستحبه الأخير يتميز بخاصة القدرة على الامتصاص لموجة طولية واحدة من موجات الضوء وإنعكاس الموجات الطولية الأخرى - وتمييز فاعلية هذه المادة بأنها تجعل الضوء الأزرق أو الأشعة فوق البنفسجية ذات الطاقة الكبيرة والموجات القصيرة - تجعلها تع مادة الفلوروكروم وبالتالي يحدث تحول الإلكترونات داخل ذرة الفلوروكروم إلى درجة من النشاط المؤدي إلى طاقة كبيرة عالية وذلك داخل الذرة - ويتسبب ذلك عودة الإلكترونات إلى مدارها الأصلي الأول مخلفة طاقة كهرومغناطيسية ومن خلال ميكروسكوب خاص بهذا الاختبار يمكن للانسان مشاهدة الطاقة الصادرة الناتجة عن استماثاث الإلكترونات الخاصة بالفلوروكروم.

* يوجد نوعين من الميكروسكوب الفلورسينتي:
 - نوع الأول: Transmitted light microscope
 - نوع الثاني: Incident light microscope
 - كما يجري هذا الاختبار بطرقتين:
 - الطريقة المباشرة:
 - Direct FAT
 - الطريقة غير المباشرة:
 - Indirect FAT

وعند إنتهاء إجراء الاختبار يتم تقييم النتائج من حيث دقة ودرجة حساسية الاختبار كالآتي:

- Sensitivity = درجة حساسية الاختبار

- Specificity = درجة دقة الاختبار

- Agreement = التوافق بين A, B = الاختبار المثالي

حيث A = الاختبار قيد التقييم , B = الاختبار المثالي

ومن مقارنة نتائج هذا الاختبار بنتائج الأليزا واختبار المصل المتعادل وجد أن هناك تماثل بنسبة 95% على الأقل.
استخدام الصبغات المختلفة
في التعرف على التأثير المرضي
للفيروسات في المزارع النسيجية
استخدام الصبغات المختلفة
في التعرف على التأثير المرضي للفيروسات في المزارع النسيجية

إعداد
د. أحمد حسين مصطفى
(باحث أول)
قسم الطاعون البقري

يجب أن يتعرف على الخلايا النسيجية وكذا القاء الضوء على الفيروسات وكيفية تكاثرها داخل الخلية الحية وذلك قبل دراسة الصبغات ودورها في التعرف على تأثير فيروسات المرض في الخلايا النسيجية.

أولا: الخلايا النسيجية:
هي خلايا حية غالبا ما تكون مصدرها عضو مثل الكلى وتنمو بشكل سريع على أسطح الزجاجيات والبلاستيك (أنواع معينة وذلك بواسطة استخدام أوساط ومحاليل فسيولوجية معقمة وتكون هذه الخلايا رقيقة سمكها خلية واحدة ولها القدرة على إعادة الزرع مرات). وتستخدم هذه الخلايا في تنمية الفيروسات بغرض إنتاج اللقاحات ومعارضتها. كما تنقسم هذه الخلايا إلى نوعان أولى وثاني.

ثانيا: الفيروسي:
هو جسم دقيق الحجم لا يرى إلا المجهر الإلكتروني ويتمد في نموه على الخلية الحية وذلك لافتقاره لوجود الريبوسوم (عضو تصنيع البروتينات) ويتكون الفيروسي من ببتيد ويتكون المادة DNA أو RNA وهي أحد نوعين إما RNA أو DNA ويتكون الجينات الوراثية من وحدات بنائية هي الببتيدزولات. والمادة الوراثية بها عدد معين من الجينات تختلف اختلاف الفيروسي. ويفلأ المادة الوراثية مجموعه من البروتينات التي تكون ممزجة عادة إما بكربيهيدرات أو دهون.
ثالثًا: تكاثر الفيروس داخل الخلية:

تمر دورة حياة الفيروس داخل الخلية الحية بعدة خطوات هي:

1- الالتصاق:

يتم التصاق الفيروس بمستقبلات الخلية وذلك عن طريق بروتين معين عادة ما يكون بالغلاف الخارجي للفيروس ويكون على شكل أهداب تلتتصق بمستقبلات خلية مماثلة في جسم الكائن الحي. تكون مماثلة في التركيبة الأمينية لهذا البروتين تستغرق هذه العملية بضع ساعات.

2- الإندماج والتفاًز من جدار الخلية:

يقوم بهذه العملية بروتين آخر تكون مهمته الإندماج ببروتين الخلايا البلازمي وتزويجه حتى يتسنى للفيروس اختراع الخلية والدخول إلى سيتوسومها. وتستغرق هذه العملية أيضا عدة ساعات أخرى.

3- التخلص من الأغلفة البروتينية وتحريك المادة الوراثية:

في هذه المرحلة يتخلص الفيروس من المواد البروتينية المحيطة ببادته الوراثية (وينقص التخلص إلا كاملا أو جزئي) وتخرج المادة الوراثية بعد ذلك وتتجه إلى النواة وذلك بغرض بدء عملية الاستنساخ.

4- الاستنساخ:

تستخدم الفيروس مادته الوراثية لعمل نسخ طبق الأصل عليها وذلك بغرضين:

أولهما: إكتشاف مادته الوراثية

ثانيهما: إرسال هذه النسخ إلى الريبوسوم في السيتوسوم لترجمتها وتكوين بروتينات لكل جين وراثي.

5- مرحلة التجميع:

يتم خلال هذه المرحلة تجميع البروتينات والمادة الوراثية الجديدة في مكان السيتوسوم وتستخدم هذه المواد في تصنيع فيروسات جديدة وأي تغيير يحدث عن
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

التركيبة الإصلية يؤدي إلى ظهور فيروس له صفات مغايرة عن الفيروس الأصلي وتعرف هذه الظاهرة بالطفرة.

6- خروج الفيروسي من الخلية:
تخرج الفيروسات الجديدة من جدار الخلية بطريقة البروز أو انفجار الخلية نفسها وفي بعض الفيروسات تأخذ جزء من جدار الخلية ليكون الغلاف الخارجي لها.

الなりません على التأثير المرضي للفيروسي على الخلايا وذلك باستخدام الصفات المختلفة:

أولا: الصبغات التقليدية:

1- صبغة الهيماتوكسيلين والأبسين: (H & E)

1- تركيبة صبغة الهيماتوكسيلين:
- صبغة الهيماتوكسيلين 5.0 جم
- كحول نقي 50 سم³

- شبة الأمونيا أو البوتاسيوم 175 جم
- ماء مقرض 1000 سم³
- أكسيد الزئبق 2.5 جم

(طريقة التحضير):

يذاب الهيماتوكسيلين في الكحول النقي كما يذاب البوتاسيوم في الماء ومع التسخين قليلا ثم يضاف المحلولان لبعضهما مع التسخين لدرجة الغليان ثم يضاف بعد ذلك أكسيد الزئبق ببطء ثم يستمر مرة أخرى حتى يظهر اللون البنفسجي وبعدها توضع الفروض في الماء البارد تشير بعدها الصبغة صالحة للاستخدام. ويجب إضافة قليل من حامض الخليك على الصبغة وفلترة قبل الاستعمال.
ب- تحضير صبغة الأيضون:
- بوجد الأيضون 1 جم
- ماء مقطر 20 سم
- كحول نقي 80 سم

يذاب الأيضون في الماء ثم يضاف الكحول.

كيفية استخدام الصبغة:
أولاً: التثبيت يتم تثبيت الخلايا بواسطة غمرها بكحول ايثيليني نقي وذلك بعد التخلص من الوسط الغذائي وذلك لمدة نصف ساعة.
ثانياً: تتخلص من الكحول وترتك الخلايا تجف في الهواء الجوي.
ثالثاً: تضيف صبغة الهيماتوكسيلين على الخلايا لمدة عشرة دقائق.
رابعاً: تفصل بعدها الخلايا بماء الصنبور لمدة عشرون دقيقة.
خامساً: يضاف صبغة الأيضون لمدة عشر دقائق.
سادساً: بعد التخلص من الصبغة تفصل الخلايا بالكحول لمدة لحظات.
سابعاً: تفحص الخلايا مجهرياً.

المشاهدات: تجد أن الخلايا المصابة بالفيروس قد استدانت وكبيرة عن الحجم وببدأت الخلايا تتجمع لتعطي خلية عرضة أو بدت تضمحل وتستيق من على الزجاج وترتك فراغات.
أولاً: صبغة الكريستال فيوليت (Crystal Violet)

(تحضير الصبغة):

* يستخدم لتحضير هذه الصبغة محلول الفوسفات الملحي المتوازن وتركيبه هو:

كlorيد الصوديوم 8.0 جم
كlorيد البوتاسيوم 8.0 جم
فوسفات ثنائي الصوديوم (مغزوم الماء) 2.16 جم
فوسفات البوتاسيوم (ثنائي الهيدروجين) 0.2 جم

تذاب هذه الاملاح في ماء مقط وترشح وتحتفظ في التلاجة لحين الاستخدام.

(تحضير الصبغة):

صبغة الكريستال فيوليت 0.2 جم
محلول الفوسفات الملحي (المتوازن) 96 سم³
فورمالين 4 سم³

تذاب الصبغة وترشح ثم تحفظ في مكان بارد ومظلم.

(طريقة الصبغة):

تثبت الخلايا بالكحول الابتيلي ثم توضع الصبغة على الخلايا لمدة عشر دقائق يتم بعدها التخلص من الصبغة وتسيل الخلايا بالماء المقط.

المشاهدات:

الخلايا المصابة بالفيروس تبدو أقل كثافة من الخلايا غير المصابة وتحت الميكروسكوب تظهر الخلايا المصابة وقد تأتي في وعاب السموم وأصبح معهبا والنواع داكن جدا وجدارد الخلايا متهك ومحترور ببعض الخلايا متناورة.
ثانياً: الصبغات الخاصة:

1- صبغة الجيسم (Giemsa Stqin)

تستخدم هذه الصبغة للتعرف على تجمعات الفيروسات داخل الخلايا النسيجية المصابة.

(تحضير الصبغة)

تضاف بوذرة الجيسم الى الجلسين ثم توضع الزجاجة في فرن التسخين حتى درجة 60\textdegree\,C لمدة من نصف ساعة الى ساعتين وبعد نوبان الصبغة في الجلسين تترك الزجاجة لببرد ثم يضاف بعد ذلك الكحول الميثيلي وعند العمل تخفى الصبغة على النحو التالي:

صبغة الجيسم المركزية: 1.25 سم3
كحول ميثيلي: 0.5 سم3
ماء مقطر: 50 سم3

الملاحظات:

نجد أن بسيتويلزم الخلايا المصابة بالفيروس جسيمات داكنة اللون تختلف في حجمها باختلاف الفيروس وهي عبارة عن تجمعات لجزء الفيروس التي سوف تستخدم Inclusion لتجميع الفيروس الكامل وهي ممتازة بـ:

2- صبغة النيوترازيل (Neutral Red)

(طريقة التحضير):

صبغة النيوترازيل: 1.5 جم
ماء مقطر: 100 سم3

تستخدم هذه الصبغة في اجراءات تجربة معينة لبعض الفيروسات التي لها القدرة على إحداث تدمير خلايا النسيجية وإعطاء شكل معين لهذا التدمير الذي يبدأ على شكل بقع ذات احجام وأشكال مختلفة. وتم هذه التجربة بعمل زرع نسيجي في طبق مستدير ويوضع عليه وسط غذائي ذا تركيبة معينة يضاف لها 1/1000000 أجأس بعد 48-72 ساعة توضع الصبغة في ظل التأثير المركزي للفيروس وتبدو البقع بالزرع النسيجي وعلى ضوء الشكل والحجم لهذه البقع يتم تحديد نوع الفيروس كما يمكن أن تستخدم هذه الطريقة في عملية عزل وتنقية الفيروسات.
الفصل
التشخيص المجهرى البكتيري
أهمية التشخيص المجهرى البكتيري:

يعد الفحص المجهرى المباشر للعينات أحد أهم وأسرع الوسائط للتشخيص المبكر للإمراض البكتيرية التي تصيب الماشية والإقماع والدجاج. ويعتمد نجاح الفحص المجهرى على عدة عوامل أهمها اختيار العينة المناسبة للمرض المشكوك في الإصابة به، والأسلوب المتبغ في فحص هذه العينة مجهرياً. وفي جميع الحالات يجب أن تكون العينة محل الفحص مصحوبة بالتاريخ المرضي للقطيع المصاب، والمرض المحتمل أن يكون هذا القطاع قد أصيب بما بناء على الإعراض الإكلينيكية، ونسبة النفوق في هذا القطاع.

كما ينبغي أن تكون هذه العينات بعداد متاحة لتمثيل كافة أفراد القطاع المصاب. كما يجب أن تكون مأخوذة من حيوانات حية مصابة أو نافقة حديثاً، وأن يكون جمعها قد تم بطريقة سليمة تميزت بها ميكروبيات غير مرضية، وأن يكون قد تم نقلها إلى المعمل بسرعة وبطريقة سليمة في أوسع معقمات أو شرائح نظيفة وداخل نوع العينة طبقاً للمرض المحتمل الإصابة به. وعلى سبيل المثال في حالات الإحثاج يتم جمع عينات من المشيمة للأمهات المجففة وذكاء من الافرازات الحمام والحيوانات كاملة ومحتويات المعدة للذئاب. أما في حالات النفوق المفاجئة فيتم جمع عينات من الدم على شرائح زجاجية وكذا مسحات معقمة من دم الحيوانات المصاب. أما في حالات الإصابات المرضية والذئاب فيتم جمع عينات من الصيد في محق معقم كما يتم عمل مسحات من الخراج بعد تحقيبه بالكحول وفتحه مشرط معطم واحد المسحة من الجدار الخارجي للخراج. وفي حالات التهاب المرضية للإناث ف يتم عمل مسحات من السائل التنفسي الشوك. وفي حالات التهاب الضرع يتم أخذ عينات معقمة من المنبر المصاب في أوسع معقمة بعد التخلص من الجزء الأول من السكين. ويتم أيضاً فحص عينات من البول المجهرياً في الكواب للتعرف على بعض المسببات البكتيرية للأمراض مثل البرتوبسيرا. وفي حالات الشك في الإصابة بميكروب الفيروس في الماشية أو مرض جوانز في الماشية والإقماع ف يتم فحص عينات من البراز.
طرق تحضير المسحات:

1- في حالة عينات السائلة أو شبه الصلبة، يتم وضع نقطة أو نقطتين من العينة على شريحة زجاجية ويتهم فردها على الشريحة في طبقة رقيقة ويتجميفها في الهواء.

2- في حالة عينات البراز يتم تخفيض جزء ضئيل بالماء، ويتم نشر المسحة في طبقة رقيقة على كل من الشريحة مما يعطي مسحات رفيعة وسمية تسمح بالتعرف على بعض الميكروبات مثل ميكروبا السل.

3- أما في عينات الانسجة يتم أخذ مسحات عن طريق الضغط الخفيف لهذه الانسجة على الشريحة وتجفيفها بعد ذلك في الهواء.

4- وفي عينات الصديد أو الافرازات في يتم التدوير الرقيق للمسحة على الشريحة وتجفيفها بعد ذلك في الهواء.

5- في جميع الأحوال بعد الجفاف التام للشريحة يتم تثبيتها بال حرارة تمهيدا لتشغيلها.

طرق الفحص المجهر:

يتم فحص العينات التي تم عمل شرائح منها أما قبل أو بعد صببها بالمجهز الضوئي العادي أو المجهر المضيء أو المجهر ذو الحقل المظلم، وذلك باستخدام العدسة البينية. ينصح في جميع الأحوال الاستخدام الأمثل لنوع المجهر المستخدم للحصول على أفضل النتائج التشخيصية وتجنب التشخيص الخاطئ أو المضلل.
استخدام الصبغات التشخيصية المختلفة

بعد فحص عينات المسحات المصبوغة أحد أهم وأسرع وأسرع الوسائل التشخيصية للعديد من الأمراض البكتيرية. ويتم استعمال هذه الطريقة وحدها أو مصبوغة بالمزج البكتيرية في التشخيص المعملي. وإذا كان المركب سوف يعتمد على هذه الطريقة في التشخيص فعلي أن يرسل عينات للعزل البكتيري وعمل اختبار حساسية الميكروب للمضادات الحيوية خصوصا إذا كان الميكرورب من النوع المقاوم للمضادات الحيوية.

ويتم تحضير بعض الصبغات المستخدمة في صب عينات في المعمل مثل صبغة الجرام وصبغة الزيل نيلسون. أما بعض الصبغات الأخرى فقد يتم شراؤها مجهزة في مجموعات. وفي حالة استخدام الصبغات سابقة التجهيز فيتم أتباع الطريقة الموجود يدها في نشرة استعمال هذه الصبغ واتباع النصائح والارشادات الخاصة بالشركة المنتجة للحصول على أفضل النتائج. ويمكن تقسيم الصبغات المستخدمة إلى الاتجاه التالي:

أ- الصبغات البسيطة:

1- الصبغة البسيطة: أولا: صب غرام
- طريقة الاستخدام:

1- يتم غمر الشريحة بعد تثبيتها على اللحى برفق - بمادة الجنسيات البنفسجي لمدة دقيقة ثم تفسل برفق بالماء.

2- يتم غمر الشريحة ببرود الجرام لمدة دقيقة واحدة ثم تفسل بالماء برفق.

3- يتم إزالة اللون بالكحول الأثليلي (95%) لمدة عشرة ثوان ويفسل بالماء.

4- يتم الصبغ الاضافي بلفير في محلول السفرائي لمدة نصف دقيقة ثم تغسل
الشريحة بالماء. وتجف بالتنشيف أو في الهواء.

5- يتم الفحص بالمجهر الضوئي المادي باستخدام العدسة الزيتية.

وتتم تقسيم الميكروريب بواسطة هذه الصبغة إلى ميكروريبات موجبة الجرام (تصبغ باللون الأزرق) وميكرورب سالبة الجرام (تصبغ باللون الأحمر).
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

ثالثا: صبغة الجسم:

- طريقة الاستخدام:

1- يتم عمل شريحة رقيقة من المادة المراد فحصها (في حالة فحص البول يتم فحص الراسب بعد الطرد المركزي).

2- يتم تثبيت الشريحة باستخدام الكحول المثلي لعدة دقائق.

3- يتم غمر الشريحة في محلول صبغة الجسم مخفف (جزء من الصبغة إلى 19 جزء من محلول رايت المتوازن) لمدة 15 دقيقة.

4- تغسل الشريحة بالماء وتجفف في الهواء.

5- يتم الفحص بالمجهز الضوئي العادي باستخدام العدسات الزيتية.

وتنستخدم هذه الصبغة لتحدي الميكروب الذي يظهر باللون الأزرق في شكل لوب.

ثالثا: صبغة الميثيلين الأزرق الجديدة:

- طريقة الاستخدام:

1- ضع نقطة من صبغة الميثيلين الأزرق الجديدة على شريحة نظيفة.

2- ضع كمية ضئيلة من المادة المراد فحصها (على سبيل المثال نقطة من الدم أو راسب البول).

3- غطى بفطانات شريحة وأفحص بالمجهز الضوئي العادي باستخدام قوة التكبير الصغري والكبير.
رابعاً: صبغة الزيل نيلسون:

طريقة الاستخدام:

1- حضر مسحة من الصبغة المراد فحصها على شريحة زجاجية وتجففها بالتسخين الخفيف على الالب عدة مرات.

2- أغمر الشريحة بمحول الكاربول فيوكرس وسخن برفق مع تجنب غليان الصبغة. وضيف المزيد من الصبغة منعاً من جفافها على الشريحة. ثم أغمش بالماء.

3- أزل اللون باستخدام الكحول الحمضي حتى زول اللون تماماً وافض بالماء.

4- اصبغ بالمثيلين الأزرق لمدة 30 ثانية ثم أغسل بالماء وتجفف الشريحة في الهواء.

5- افحص الشريحة بالمجهز الضوئي العادي باستخدام العدسة الزيتية ويثمر ميكروبات السل أو الميكروبات الصائمة للحاضض باللون الأحمر، بينما تظهر الميكروبات غير الصائمة للحاضض باللون الأزرق.

خامساً: صبغة المثيلين الأزرق المتعدد الكروم:

تستخدم هذه الصبغة لصبغ ميكروبات الحمي الفحصية في شرائح دم وأنسجة الأغناط التافهة قبل البدء في الفحص البكتريولوجي لهذه الصبغات.

وتحضر هذه الصبغة بطرقتين، الأولى تترك المثيلين الأزرق لينضج بما في مكان مظلم لمدة سنة حيث تؤدي أكسدة المثيلين الأزرق إلى تكون صبغة الكروم المتعدد. والطريقة الثانية بإضافة مواد تساعد على نضج الصبغة بطريقة سريعة مثل بيكربيونات الصوديوم.

*طريقة الاستخدام:

1- تعمل شرائح الدم أو الأنسجة وتجفف في الهواء وثبتة بالحرارة.

2- تغطي الشريحة بصبغة المثيلين الأزرق المتعدد الكروم وترك لمدة 2-3 دقائق.
وتحلل الشريحة بالماء وتتفشى بورق الترشيح وتتحصى بالعاسة الزيتية للمجرضائي العادي، وتأخذ عصراوات منكروب الحمي المحمية اللون الأزرق بينما تصب المحفظة الخاصة بالمنكروب باللون البنفسجي ويعود هذا بتفاعل ماكفيدين.

سادساً: صبغة الليشماني:

تستخدم هذه الصبغة لصبغ طفليات الدم وبعض الميكروبات التي تسبب التسمم الدموي مثل منكروب الباستريلا - وذلك في شرائح الدم الخاصة بالحيوانات النافقة أو المصابية. ولا يلزم لهذه الصبغة تثبت شرائح الدم حيث أن الصبغة نفسها تقوم بهذا.

طريقة الاستخدام:

1- تخفف الشرائح في الهواء وتصب الصبغة غير مخففة على الشرائح ثم تترك لمدة دقيقة ثم يضاف ضعف كمية الصبغة ماء مقطو وتطخت مع الصبغة على الشريحة عن طريق الشفط وإعادة السائل لتجنب ترسب الصبغة وترك بعد ذلك لمدة 7 دقائق.

2- تغسل الصبغة بالماء من على الشريحة ويبكر الماء المقطو عدة دقائق.

3- يتم تنشيف الشريحة بورق الترشيح وتتحصى بالعاسة الزيتية بالمجرضائي العادي.

(ب) الصبغات المفرقة:

تستخدم هذه الصبغات للتعرف على الأنواع المختلفة من الميكروبات.

1- صبغة الجرام وقدسبق شرحها.

2- صبغة الزيكل نيلسون وقدسبق شرحها.

3- صبغة الزيكل نيلسون المعدلة. وتستخدم هذه الصبغة للتعرف على الجراثيم الخاصة ببعض الميكروبات المجرثة، وطريقة استخدام هذه الصبغة هي نفس طريقة استخدام صبغة الزيكل نيلسون فيما بعد، بعد الصبغ بصبغة الكربول فيركسين تفشل الشريحة بالماء، ويدفع سلفيت الصوديوم، وتصبغ الجراثيم باللون البنفسجي الغامق بينما تصب عصراوات باللون الأزرق.
تستخدم هذه الصبغة أيضا لصبغ ميكروب البروسيلإ ويستعمل 0.5% حامض الخليك كميزيل للون.

كما تستخدم هذه الصبغة لصبغ ميكروب الجزان ويستعمل 5% حامض الكرتريك كميزيل للون.

4- صبغة الليثمان وقد سبق شرحها.

5- صبغة الجمسا وقد سبق شرحها.

6- صبغة الفوناتانا وتستخدم هذه الصبغة لصبغ ميكروب الزهري.

(ج) الصبغات المتخصصة:

1- صبغة الحفظة: يستخدم لهذا الغرض الحبر الشيمي أما بالطريقة السائلة بإضافة الحبر الي الميكروب في الوسط السائل ويغطى بغطاء شريحة ويفحص تحت الميكروسكوب أو بالطريقة الجافة وتسخدم المثيلين الأزرق كصبغة إضافية.

2- صبغة الجراهم وتستخدم لهذا الغرض أما صبغة الزيل نيلسون المعدلة أو صبغة الملاكيت الأخضر.
2- وسط الآجار المدم ويستخدم للتفرقة بين الميكروبات العنقودية.
3- وسط دبس كوكسي كولات ستارت آجار ويستخدم في عزل ميكروبات السالمونيلا والشيجلا عن الميكروبات الأخرى.

و- أوساط غذائية مختارة:

هي تحضّر بالإضافة بعض المواد التي تناسب فقط نمو بعض أنواع الميكروبات مثل إضافة كلوريد الصوديوم أو الصوديوم ازيد أو الانتروبيونات إلى الشوربة المغذية لانماء الميكروب العنقودي أو ميكروبات السالمونيلا دون غيرها.

ه- أوساط غذائية متخصصة:

وتستخدم هذه الأوساط الغذائية لزراعة أنواع خاصة من الميكروبات وتتمثل على الأنواع التالية:

1- وسط لونشتين جنشن الغذائي : لانماء ميكروب السل.
2- وسط اللحم المطبخ : لانماء الميكروبات اللاهوائية.
3- وسط سبارود : لانماء الفطريات.
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

محاضرة

إعداد المنظمة العربية للتضمية الزراعية
لا يوجد نص يمكن قراءته بشكل طبيعي من الصورة المقدمة.
استعراض المجهر في بعض الاختبارات الفيروسية

إعداد

أ. د. عادل محمد حسن عزب
رئيس بحوث ورئيس قسم بحوث لقاحات الحيوانات المنزلية الأليفة
المعهد بحوث الأمتال واللقاحات البيطرية
العباسية - القاهرة

ما لا شك فيه أن اكتشاف المجهر في القرن الثامن عشر كان له أثر بشكل كبير في نهضة العلوم الوراثية لما كان غير مرئي قبل اكتشاف المجهر. أصبح متاح بعد ذلك. وقد تطور المجهر من صورته البدائية التي كانت تكلف عشرات المرات حتى وصلنا إلى المجاهر الإلكترونية الحديثة التي تكرر إلى حوالي 300000 مرة (ثلاثمائة ألف مرة)

ما يمكن العلماء من رؤية أدق تفاصيل الخلية الحية (النباتية والحيوانية) ليس ذلك فحسب بل يمكنها أيضاً من رؤية الفيروسات بتفاصيلها الدقيقة وسوف نركز هنا على ثلاث أنواع من المجاهر وبصورة مختصرة حيث أن أهم المجاهر شيوعاً في علم الفيروسات هي:

1. المجهر الضوئي
2. المجهر المشع (الفلورستي)
3. المجهر الإلكتروني

امثلة على استخداماته في مجال علم الفيروسات:

1. فحص خلايا النور النسيجي:

تعتبر البلازما النور النسيجي واحدة من أهم المواد الوراثية التي تتواجد في مختبر الفيروسات حيث إنه يمكن اعتبارها المادة الخام التي يتم عليها التشخيص إضافياً
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

إنتاج العديد من اللقاحات. هذه الخلايا لا يمكن فحصها والتأكد من سلامة نموها دون الاستعانة بالمجهر الضوئي ويستخدم هنا نوع خاص يسمى مجهر الزرع النسيجي أو المجهر المقلوب. وهذا النوع من المجاهر يسمح بفحص الخلايا داخل قنائي وأطاق الزرع النسيجي ويجب أن تكون عين اخصائي الفيروسات مدرية بشكل كامل على الشكل الطبيعي لخلايا الزرع النسيجي حتى يستطيع المقارنة بين الخلايا الطبيعية والخلايا المعبية بالفيروس.

ب- معايرة الفيروسات التي تنمو معاو الزرع النسيجي (مثال فيروس السعار):

1- تزرع خلايا كلية المرسومة السورية الرضيعة من BHK في أطباق بلاستيكية من نوع خاصة ذات 96 حفرة على أن تكون الحفر من النوع المستطيل القاع.
2- تحضن الخلايا داخل حاضنة ذات درجة حرارة 37°C.
3- تفحص الأطباق يومياً حتى اكتمال نمو الخلايا.
4- يتم عمل تخفيف عباعي للفيروس (1:10 - 1:100 - 1:1000 - 1:10000) ...
5- توضع كمية محدودة (25 مليميكون) من محلول الفيروس المخفف في حفر الطبق (6 حفر لكل تخفيف).
6- يترك الفيروس مع الخلايا في الحاضنة لمدة 37°C.
7- تفحص الخلايا يومياً للتعرف على التأثير الممرض للفيروس (CPE).
8- يتم عمل 6 حفر سبطرة سابقة (خلايا بدون فيروس).
9- يتم عمل 6 حفر سبطرة موجبة (خلايا مع فيروس معلوم التأثير).
10- عند ظهور التأثير الممرض للفيروس يتم قراءة بقية الطبق وحساب المعيار إما بطريقة كاربر أو طريقه رد ومنش حيث أنها جداول حسابية خاصة.

ج- اختبار المصل المتعادل:

في هذا الاختبار يستخدم المجهر الضوئي وايضا خلايا الزرع النسيجي لاستبيان وجود الأجساد المناعية في أمصال الحيوانات المصابة بالمرض أو المحصنة باللقاح المرضي.
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية البكتيرية

محاضرة

ويتم الاختبار بالخطوات التالية:

1- يتم زرع الخلايا في أطباق الزرع الاصطناعي كما سبق.
2- بعد تامYO الخلايا يتم تخزين المصل إلى تخزين إما بطريقة التخزين الثاني (2:1 - 4:1 - 8:1 ... أو طريقه التخزين النوعي (4:1 - 16:1 - 64:1 ...).
3- يتم مزج كل تخزين من تخزين المصل مع كمية مساوية من محلول فيروس خاص بالكائنات المائية المراد الكشف عنها في أمصال الحيوانات والتي يتم تخزينها في الخلتة رقم 2. يتم المزج بين التخزين وكمية مساوية من محلول الفيروس بتركيز فيروس قدرة 210 نصف جرعة مميتة لخلايا الزرع الاصطناعي لكل سم 3.
4- يتم ترك المزيج في درجة 37 م لمدة 2/1 ساعة حتى تتم عملية التعادل وتكون مستقرة الضد والمستضد.
5- يتم وضع كميات محدودة من المزيج في حفر الاطباق بواقع 6 حفر لكل تخزين.
6- تعمل مسطر الماءات سلامية (خلايا فقط) وأخرى سالبة (مصل فقط) وموجهة (فيروس مع الخلايا).
7- عند ظهور التأثير الممرض في السيطرة الموجبة يتم حساب مستوى الأجسام المناعية باحدي طرق الحساب (كاربر أو ريد ومنش) وفقاً لذلك.

هذا الاختبار مهم جدا في الفيروسات نظراً لأنه اختبار تقليدي ودقيق وحساس ويساعد على التعرف على المستوى المناعي في جسم الحيوان المأخوذ منه المصل.

د- استخدام المجهر الضوئي في التعرف على التغييرات المرضية النسيجية:

نتيجة لوجود الفيروسي:

حيث أن هناك بعض الأمراض الفيروسية لها المقدرة على إحداث تغييرات خاصة جداً بها تساعد على تشخيصها وإذا أخذنا السعال كمثال هنا أيضاً نجد أن أهم تغيير نسيجي هو وجود أجسام (نجرى) في الخلايا المصابة للمادة الرمادية في مخ الحيوان المصغر. واجسام (نجرى) هي عبارة عن أجسام إستجابة (Inclusion bodies) من النوع المحب للصبغة القاعدية (أزرق اللون) داخل هيول الخيالة من نوع (A) Cow dry. علاوة على ذلك فإن خلايا المادة الرمادية من المخ تعاني من تتكسر صحي وتهابات غير متخصصة.

ولكن كيف يمكن عمل شريحة نسيجية للفحص المجهر تحت المجهر الضوئي؟
لعمل شريحة نسيجية يلزم إتباع الخطوات التالية:
عينة من مخ الحيوان

ثبت العينة بواسطة محلول الفورمالين 20٪ مع منظم الفوسفات
وتترك العينة لمدة 14 يوم في هذا محلول
غسيل (24 ساعة)
تهذيب للنسيج

نزع لجزيئات الماء بواسطة محاليل متردية من الكحول الأيثيلي 80٪ و 95٪ ومطلق

تنظيف النسيج بوضعة في الزيلين
غمس النسيج في البراغين السائل (بارافين A) عند درجة 37م درجة 4 ساعات ويكون البارافين ممزوج مع الزيلين بنسبة 50٪
نقل النسيج إلى البارافين II عند درجة 65م لمدة ساعتين
نقل النسيج إلى البارافين عند درجة 60م لمدة ساعتين
نقل النسيج إلى قوالب بها بارافين نقى وترك لبرود
يقطع النسيج إلى شرائح رقيقة بسمك 5-10 ميكرون بواسطة الميكروتوم
توجه الشرائح على سطح حمام مائي درجة 40م
تفرش الشرائح على شرائح زجاجية مدهونة بالبومين البيض
تجفف بواسطة منر (40-50م)
تصسيح بصباغ الهيماتوكسيلين والأيوسين
تغطى بشرائح زجاجية بواسطة الكينا بلسم
تفحص تحت المجهر الضوئي حيث تلاحظ التغييرات السابقة الذكر
المجهر المشع (الفلورسنتي):

هو مجهر ذو حقل مستقيم يستخدم على الأشعة فوق البنفسجية عند وجود مادة مشعة. عند سقوط هذه الأشعة عليها فإنها تظهر بشكل مضيئ. أخذ نتائج الأشعة المشعة واعتماد مادة تستخدم هي مادة الفلورسين أيزوسبيسينات وهي كما قلنا مادة تشع عند سقوط الأشعة فوق البنفسجية عليها.

لإجراء هذا الاختبار يقوم بها الأتي:

1- عمل شريحة مجمدة من النسيج الحيوي بواسطة جهاز التقاط تحف تحت التجميد أو عمل مسحات مباشرة.

2- توضيح الشرائح أو المسحات على شرائح زجاجية.

3- تثبت الشرائح أو المسحات بواسطة الاستيتن لمدة 4 ساعات على درجة 20 م.

4- تفصل الشرائح بحلول الفلوسفات المنظم للتفصيل من الاستيتن ثم تصبغ الشرائح بعد ذلك بالطريقة غير المباشرة حيث يضاف قليل من المصل المضاد للفيروس المراد الكشف عنه بدون أي صبغة.

5- تحتضن الشرائح لمدة 1/2 ساعة على درجة 37 م وتكون الحضانة رطبة.

6- يتخلص من المصل الزائد بالغسيل في محلول الفلوسفات المنظم 3 مرات كل 10 دقائق.

7- تضاف قليل مصل مضاد لنوع الحيوان (Anti-species) بصبغة الفلورسين أيزوسبيسينات.

8- إعادة فترة التحضين الرطب.

9- تعاد خلط من الفلوسفات الثلاثية بالمحلول المنظم.

10- تخطيط الشريرة بحل محل الجلسرول 90% مع فوسفات منظم بدرجة أس هيدروجيني 7.5.

11- تفحص الشرائح بالمجهر عند ظهور الالضاع الفلورسيني تعتبر الشرائح موجبة عند تواجد الفيروس في النسيج.

إعداد المنظمة العربية للتنمية الزراعية

48

الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

محاضرة
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

3 - المجهر الإلكتروني:

في منتصف القرن العشرين حدثت ثورة علمية بحق نتيجة لاكتشاف المجهر الإلكتروني الذي مكن علماء الفيروسات من رؤية الفيروس نفسه وتكامل تفاعليه بعد أن كانوا يروا تأثيره فقط على المزارع النسيجية أو في البيض المخصب أو في حيوانات التجارب ولا شك أن الحديث عن المجهر الإلكتروني حديث طويل جدا وسوف نحاول تبسيط الامر هنا. فالهدف الرئيسي من استخدام المجهر الإلكتروني هو التعرف على التركيب والعينة التي تفحص بواسطة المجهر الإلكتروني يجب أن يحافظ عليها قدر المستطاع بحالتها الطبيعية حيث أن أي تغير يمكن أن يؤدي إلى نتائج غير دقيقة نظرا لحساسية المجهر وقوة تكبيرة الشديدة والنظرية القائمة عليها عمل المجهر الإلكتروني هي أن المجهر يطلق الكترونات تترتد من الصباغ الخاصة به مظهرة للشكل وتفاصيل العينة المواد فحصها سواء كانت حيوانية أو نباتية. وللحفاظ على العينات بحالة قريبة جدا من الطبيعية يجب استخدام مثبتات خاصة مثل الدهون (الجلوتور الدهيد والبارافور مالدريد). كما يجب أن تكون كافة المواد المستخدمة في عمليات التقشير والصبغة من كيماويات شديدة النقاوة يطلق عليها (درجة المجهر الإلكتروني).
خطوات العمل:

أخذ العينة المراد فحصها

تثبيت العينة بواسطة الالهيدات (تثبيت أول)

تثبيت العينة بواسطة أوزميم تتراوكسيد (تثبيت ثاني)

نزع الماء من العينة بواسطة محلول متصاعد من مادة مذيبة (آسيتون)

غمس العينة في مادة الأليبوكسي ريزين

Ultra-microtome

قطع فائق الدقة

وضع الشرائح في البركان (من نحاس غاليا)

صبغ الشرايحة بواسطة أحد الصبغات الخاصة

أهم صبغات المجهر الإلكتروني هي صبغة استمنت البوراتيل

وهي صبغة إما مائية (تحضر في ماء) أو كحولية (تحضر في الابن Thou)

تفحص تحت المجهر الإلكتروني

هذه فكرة مبسطة عن أهم المجاهر المستخدمة في مجال علم الفيروسات وبعض من استخداماتها وفيمايلي بعض الصور التوضيحية لما سبق التحدث عنه.
صورة (1) توضح للتغير المرضي لخلايا الزرع النسيجية بعد حقنها بالفيروس.

صورة (2) مصبوغ بصبغة الهيماتوكسيلين والأوبسين توضح وجود الأجسام الإشتمالية داخل الجديدي (Inclusion bodies).
الدورة التدريبية القومية لتشخيص الأمراض الفيروستية والبكتيرية

صورة (3): توضح وجود الفيروسات المشعة في خلايا مصابة بالفيروس.

صورة (4): فيروس الروتا بالمجهر الإلكتروني.
Neutralization tests
اختبارات التعادل
Neutralization tests

إعداد
أ.د. عزيز ميخائيل أسحق

تقوم اختبارات التعادل على حقيقة أن الفيروس الحي حينما تتم معاملته بالإجسام المناعية المضادة (الشخصية له) تتم معادالته ويخضع غير قادر على العدوى للخلايا أو أغشية البيض المخصب. وعند إجراء هذه الاختبارات في حيوانات التجارب الحية يطلق عليها اسم اختبارات الحماية .

Protection tests

ويتم اختبارات التعادل في مرحلتين كما هو موضح بالرسم (الشكل) حيث يتفاعل (يعمل) الفيروس الحي في المرحلة الأولى مع الأجسام المناعية. وفي المرحلة الثانية يتم حقل الفيروس المتحد مع الأجسام المناعية (حقنهما معا) على الخلايا الطبيعية أو أغشية البيض المخصب القابلة للعدوى بالفيروس وبعد فترة حضانة مناسبة من 5-7 أيام يتم فحص الخلايا أو الأغشية العائلة لوجود الآثار المرضية.

النتيجة:

1- في حالة ارتباط الأجسام المناعية بالفيروس (من المرحلة الأولى) يكون الفيروس متعاقد ولا يسبب عدوى الخلايا أو الأغشية وبالتالي لاينتج عنه آثار مرضية.

2- أن لم تكن الأجسام المناعية مرتبطية بالفيروس في المرحلة الأولى يظل الفيروس نشط ويسبي عدوى الخلايا أو الأغشية وينتج عنها آثار مرضية (عديما).

إستخدامات اختبار التعادل:

1- في التعرف على الفيروسات المجهولة.

2- في التعرف على الأجسام المناعية المجهولة.
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

أولاً: للأسدلال على الفيروسات المجهولة يتم تحضير مستخلص للفيروس المجهول ويخلط مع الأجسام المناعية المعلومة كما في المرحلة الأولى.

ثانياً: إن كانت الأجسام المناعية هي المجهولة يتم تحضير مستخلص من الفيروس المعلوم ويخلط مع سيرم دم الحيوان أو الطائر المريض والمحتوي على الأجسام المناعية المجهولة.

وفي هذه الحالة يتم بعناية تقييم الفيروس قبل اجراة اختبار التعادل (أي تتم معايرته).

والمراحل الثانية في كل الحالات واحدة وهي حقن الخيط السابق تحضيره (فيروس أجسام مناعية) في الخلايا القابلة للعبدو أو على أغشية البيض المخصبة وتركها في الحضانة لمدة من 5-7 أيام حتى قراءة وحساب النتيجة.

فوائد اختبار التعادل:

بإمكان أدلة نتائج ويعتبر المرجع للتجارب السيرولوجية الأخرى المستخدمة للأسدلال على الفيروسات المجهولة - كذلك فإن عثرات الفيروس الواحد (مثل الانتيرويروس) يمكن الاستدلال عليها والتفرقة فيما بينها باختبار التعادل الفيروسي.
اختبار سلسلة التفاعل على البلمرة
اختبار سلسلة التفاعل على البلمرة

إعداد
د. خسّام جمال الدين إسماعيل
باحث أول بقسم بحوث الحمى القلاعية
بمعهد بحوث الأency واللقاحات البيطرية

PCR
تعريف
هو اختبار يعتمد أساسا على الكشف عن جزء خاص من الحمض النووي للفيروسات أو البكتيرات أو الفطريات وهي اختبار يتم خارج الخلية الحية ويتضمن استخدام الإنزيمات (المحضّرات) سلسلة مّتكرّرة من ثلاث درجات حرارة مختلفة مما يعطي عدد متضاعف من الجزء الذي يتم اكتشافه بعدد $2^{	ext{ع}}$ ع عدد سلسلة درجات حرارة.

خصائص اختبار PCR
يعتمد على تهجين بادي التفاعل مع الحمض النووي المراد الكشف عنه وأن بادي التفاعل يتكون من 18-24 وحدة قاعدية من الحمض النووي ويتم انتاج بادي التفاعل في المعمل باستخدام جهاز تحضير الحمض النووي.

اختبار PCR
أ- درجة حرارة تغيّر طبيعة الحمض النووي درجة حرارة 95م لمدة 3-5 دقائق لفصل طرف الحمض النووي DNA
ب- درجة حرارة تثبيت بادي التفاعل على إحدى خيوط الحمض النووي وتعتمد هذه الدرجة على عدد الوحدات البنائية المختلفة فانه يتم حساب $2^{	ext{ع}}$ لكل من الوحدة س ¡، أ لكل من الوحدة أ، ب من الحمض النووي.
ج- عمل إنزيم البلمرة: يقوم إنزيم البلمرة بعمل خط آخر مقابل للخط الأصلي ببداية مع بدء التفاعل الذي يصفه على الخط الأصلي وينعى هذا الإنزيم في درجة حرارة 72 مئوية ويتم تكرار الثلاث خطوات الأخيرة لعدد 30-40 مرة للحصول على عدد متضاعف من الحمض النووي لسهولة الكشف عنه وبالتالي يتم الكشف عن الميكروب.

يتم الكشف عن الحمض النووي بطريقة التحليل الكهربائي باستخدام مادة تصبح الحمض النووي وهي بروميد أيديوم و باستخدام أشعة فوق البنفسجية.
اختبار التعادل المصلي
اختبار التعادل المصل

إعداد
د. سميرة سعيد طه

حتى يتم هذا الاختبار:

يتم باستخدام أي فيروس وخاصة الفيروسات التي ليس لها خاصية التلازن أو المتم المثبت ويستخدم لقياس الأجسام المناعية المضادة أو لقياس العدوى الحديثة.

ما هو هذا الاختبار؟

وهو عبارة عن تفاعل بين الفيروس والاجسام المناعية المضادة في المصل ثم يتم حقن الخليط السابق في العائل المناسب (النسج الزراعي- البيض المخصب أو فئران التجرب) الذي يظهر الاعراض المرضية الخاصة بالمرض المراد قياس الأجسام المناعية المضادة له.

المواد المستخدمة في الاختبار:

1- الفيروس: يستخدم لقياس الأجسام المناعية المضادة أو العدوى الحديثة التي تتجاوز نسبة الأجسام المناعية المضادة أربعة أضعاف في اختبار السيرم الزوجي في الحيوانات المعدية.

2- المصل: يتم تسمحته لدرجة 56م لمدة نصف ساعة لتدمير أي مواد غير متخصصة في التفاعل (Non-specific neutralizing).

يتم هذا التفاعل بطرقتين هما:

الطريقة الأولى: فيروس ثابت مع تخفيفات مختلفة من السيرم.

الطريقة الثانية: سيرم ثابت مع تخفيفات مختلفة من الفيروس.
الطريقة الأولى:
- يتم عمل تخفيفات مختلفة من السيرم (1/2, 1/4, 1/8, 1/16).
- تقاس القوة العالية للفيروس قبل استخدامه في الدراسة، واستخدام كميات متساوية من الفيروس المحتوى على 100 جزء من جزيئات الفيروس الذي يعد تأثير مرضي في 50% من خلايا الزرع النسيجي تضاف لكل تخفيف من التخفيفات السابقة ويتكرر لفترة مناسبة في درجة حرارة مناسبة (37°C) لمدة نصف ساعة ليتم حدوث التفاعل الكامن.
- يتم قياس معدل الإجسام المناعية بآخذ تخفيفات من السيرم لا يظهر التأثير المرضي للفيروس المستخدم.

الطريقة الثانية:
- يعمل تخفيفات مختلفة من الفيروس (1-10, 1-2, 1-10) يضيف إليها تخفيف واحد من المصل.
- تُجري قوة الفيروس في وجود سيرم غير محتوى على أجسام مناعية مضادة للفيروس وكذلك في وجود سيرم على المناعة (سيرم معلوم قوته المناعية).

(Log_{10} NI) Neutralizing Index

الفرق بين القرنين يسمى التفاعل:

خلط كميات متساوية من الفيروس والسيرم لفترة مناسبة ودرجة حرارة مناسبة.

طريقة الحقن:
- يتم حقن الخليط مباشرة بعد تمام التفاعل في العائل المناسب على النحو التالي:
 1- 0.2 من المليليتر لكل أنبوب من خلايا الزرع النسيجي.
 2- 0.03 من المليليتر داخل الفشل البريتوني (I/P) أي في المخ لكل قارئ عمر يوم (Intracerebral).
3-0.1 ملليتـر فـي بيض مخصـص عـبر 12 يوم

(Chorioallantoic membrane)

الضوابط:

1- يستخدم ضابط للفيروس للدالة على فاعلية الفيروس المستخدم.
2- يستخدم ضابط لسمنة السيرم.
3- يستخدم ضابط للتفاعل أو لخلايا الزرع النسيجي ببعض حقن.

مراقبة جودة الاختبار:

عن طريق وضع البيض المحقون وحيوانات التجارب وخلايا الزرع النسيجي في ظروف مناسبة حتى يظهر التأثير المرئي ويتم تقريبا الاختبار بقياس القوة العيانية للفيروس وكذلك ضابط الفيروس المصاحب للتجربة. بالنسبة لخلايا الزرع النسيجي يتم وضعها في حضانة 37 ملمrats لمدة أسبوعين. يتم الفحص ميكروسكوبيا يوميا للاحتمال التأثير المرئي للفيروس.

الطريقة الحكم على الاختبار:

(Interpretation)

للاحتفاظ بالحيوانات المحقون والبيض المخصص من حيث الاعراض التي تظهر عليها وكذلك نسبة النفوق كما تلاحظ خلايا الزرع النسيجي لظهور أي آثار مرضية للفيروس.

(CPE)

Reed and Muench أو Karber Method

القوة المناعية

يُقسّم باستخدام (Titre) وجود الأجسام المناعية أحسن قياس لمناعة الفيروس، أي تشير من نسبة الأجسام المناعية في اختبار السيرم الزوجي للحيوانات المعدة في نفس الاختبار دالة على وجود العدوى الحبيبة.

(الدورة التدريبية القومية لتحصين الأمراض الفيروسية والبكتيرية)

(إعداد المنظمة العربية للتنمية الزراعية)
بحث عن
إنتاج مسابر (كواشف) للاحماض النووية
إنتاج مسابر (كواشف) للحمض النووي

DNA Probes

إعداد
د. علاء الخولي
قسم بحوث الهندسة الوراثية

1- نبذة عن بعض مشاكل تشخيص الأمراض المعدية:

مقاييس السيطرة على العديد من الأمراض المعدية تعتمد أساساً على الحفاظ على قطعان الحيوانات في صورة نظيفة ومغلقة والكشف النوري للحيوانات داخل القطيع وقبل إدخالها في قطيع جديد وكذلك التشخيص المعملي الدقيق للحيوانات المصابة وانتظام برامج التحصين.

إن الطرق المتداولة للتعرف على الميكروزيات الباثولوجية في العينات الإكلينيكية والباثولوجية لها الكثير من العيوب للأسباب الآتية:

1- لاتيب الأعمال سريع للعينات المناسبة تحتوى على المسبب المرضي في صورة حية حتى يمكن زرعه وعزله على البيئة المناسبة وعلى ذلك تحتاج إلى ميديا خاصة واختبارات بيوكييماتية وكذلك أمصال خاصة عالية المناعة.

2- تحتاج إلى وقت كبير ومصاريف كثيرة ويسعيب تطبيقها في القطعان ذات الأعداد الكبيرة من الحيوانات.

3- هناك العديد من المسببات المرضية التي يصعب عزلها نورياً بالطرق الرتوبية ومتلك ذلك بكتريا التربوبينما، وفيروس البابيلوما، وفيروس السعار الكاذب الدائم وهناك ميكروزيات يصعب ترميمها مثل الميكروزيلازما والريكسيا وكذلك ميكروزيات بطيئة في النمو من أسبابها إلى شهر مثل السل.

وكان لتفجير الثورة المعلوماتية الوراثية تأثير مباشر في استنباط العديد من الأدوات
تحت عنوان "الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية"، يتحدث النص عن التحصينات التي تعتمد على تكنولوجيا الاحماض النووية والبيولوجيا الجزيئية. يذكر أن وفرت بدائل أفضل من طرق التشخيص العادية للأمراض المعدية من حيث سرعة النتائج وزيادة الحساسية والتخصص.

- مسابر الأحماض النووية للتشخيص الوراثي:

إن مجسات الأحماض النووية هي عبارة عن تتابع من القواعد النيوكليوتيدية في RNA صورة شريط مفرد قصير منشأه إما حامض نووي ريبوئي أو دينوكسي ريبوزي والتي تتناسب مع نمط النيوكليوتيد الخاص ومثل هذا الشريط المنتج دائم DNA أو وتصمم المسابر أساسا للتشخيص الوراثي للميكروبات عن طريق التعرف (hybrid) على نمط النيوكليوتيدي الخاص بهذا الميكروب. وتعمل هذه المسابر على جميع أنواع الأحماض النووية إما احتمال نووية منتجة (Genomic) أو الاحماض النووية الخارجية كروموزوومية (plasmid DNA) والحمض النووي الريبوئي كما في حالة البكتيريا. وقد تكون المسابر خاصة بالكشف الوراثي عن العائلات أو الفصائل أو الأجناس أو المترات الميكروبية أو الكشف عن التتابعات النيوكليوتيدية المسئولة عن المنتجات الميكروبية الخاصة مثل التوكسينات والهيموليسينات.

وهناك كثير من مسابر التشخيص الوراثي قد تم استنباطها للكشف عن العديد من البكتيريا والفيروسات والفطريات والطفيليات.

- تحضير مسلاب التشخيص الوراثي:

يتم تحضير المسابر الوراثية بعزل الجزء الخاص من التتابع النيوكليوتيد المراد بكلفته أو زيادة إما بطرق التركيب الوراثي أو باستخدام تفاعل البلمرة التسلسلي (RCR) ثم يتم إعادة قطع هذه التتابع النيوكليوتيد الخاص مثلاً بكافش مشع 32P ، أو غير مشع (بيروتين، ديكسونجين، فلورسين).. ومن الجدير أن يستخدم الحامض النووي النيوكليسي دينوكسي المكمل (RNA) أو الحامض النووي الريبوئي (cDNA) أو سلاسل النيوكليوتيدية قصيرة صناعة كمسابر بعد تعليمها. ورغم أن استنباط مسابر الأمراض النووية يستهلك وقت طويل وتكلفة عالية في البداية إلا أنه بمجرد عزل التتابع النيوكليوتيدي وكولونته يصبح لدينا مصدر دائم ورخيص للتشفير الوراثي للميكروبات.
4- تقنية التهجين (DNA hybridization):

إن أساس تهجين الأحماض النووية هو أن الأحماض النووية في شكل سلاسل مفردة على غشاء من الفيتروسيلون أن التكامل أو الموجودة داخل النسيج تحت الفحص يتم تهجينها بمسابر معلنة تحمل القواعد المكملة للتنابع المطلوب. سببها وتم التكامل الجزئي بين القواعد المؤلفة بالأحماض النووية مع توجه مع س. ويشمل تهجين الأحماض النووية أربع خطوات رئيسية:

أ- تجهيز الأحماض النووية في العينات المختبرة بالتكيف.

ب- إضافة المسابر المعلنة لإجراء تفاعل التهجين مع الأحماض النووية.

ج- التخلص من مسابر الأحماض النووية الغير مهجة.

د- الكشف عن مسابر الأحماض النووية المهجة بعرضها إلى أفلام الإشعة السينية في حالة المسابر المشعة أو بالكشف عن التفاعل اللوني في حالة المسابر المعلنة أنزيميا وفلورسينتيا كما هو المنتسب في اختبارات الصبغ المناعي والألبزا.

5- تقنيات تهجين الأحماض النووية:

- تقنية التهجين باللطع النقطي يستخدم في حالة لطع العينات المختبرة مباشرة على غشاء من النايلون أو الفيتروسيلون.

- تقنية سوثرن (Southern) للتهجين النقطي وتشير إلى فصل الحامل النووي الديئيسي ريبوزي (DNA) كهربائيًا على جل الإجازور ثم نقله على الفضاء.

- تقنية نورثرن (Northern) للتهجين النقطي وتشير إلى فصل الحامل النووي الريبوزي (RNA) كهربائيًا على جل الإجازور ثم نقله وتعلق على الفضاء الملانم لتهجينه بالمسابر الخاصة به.

- تقنية التهجين في الموقع (in situ) وتشير إلى إحداث عملية التهجين بين الأحماض النووية داخل التسيج أو الخلية والمسابر الخاصة بها.
- هناك محاولات مستمرة لتطوير تقنيات تهجين الأحماض النووية تهدف إلى تقليل التهجين غير المتخصص الزائف وتمثل ذلك إستنبطاب طرق التهجين الشطري (Dipstick assay) وعصب الفمز (Sandwich assay) استخداما في ميكروبيولوجيا الغذاء.

6- تطبيقات تهجين الأحماض النووية في مجال الأمراض المعدية البترولية:

1- الكشف عن الكثير من الفيروسات البيطرية الهامة مثل الج_numpy وابسال الفيروسي الماشية، وفيروسات الأنيدو والنسان الأزرق والحمى القلاعية والسامار الكاذب، الطاعون البقر والروتيا والفيروسات المعوية.

2- الكشف عن الكثير من البكتيريا مثل الكاميلوباكتر، والسل والبيتوبسيرا، والإيد وليكسيامبا. كلاسي.

3- الكشف عن الملوثات الميكروبية في خلايا الزرع النسيجية والمستحضرات الحيوية مثل اللقيمات.

4- تصنيف الميكروبات وتحديد طرازها العرقي الوراثي.

5- الراقبة الميكروبيولوجية على الأذنية.

6- الدراسات الوارثية للميكروبات وطفراتها.
تحميل الجينات على حوامل لاستخدامها في إنتاج مستحضرات تشخيصية في الاختبارات العملية
حيح الجينات على حوامل لاستخدامها في إنتاج مستحضرات تشخيصية في الاختبارات المعملية

إعداد
د. سهام عبدالرشيد الزيدي
رئيس قسم بحوث الهندسة الوراثية

مقدمة في أساسيات البيولوجي الجزيئية:
- المادة الوراثية للكائنات الحية من البكتيريا حتى الإنسان مادة واحدة هي الحمض النووي الديوxyzki ريبوزي أو الدنا (Deoxyribonucleic Acid) . Ribonucleic acid (RNA) (Watson and Crick عام 1953 . وقد كان هذا الاكتشاف هو بداية عصر جديد لعلم البيولوجيا الجزيئية والهندسة الوراثية التي يخلق الاطباء أملًا كبيرًا عليها في حل مياواف الطب من مشكلات خلال القرن الحادي والعشرين.
- من المعروف أن كل صفة وراثية من صفات أي كائن حي تكون مجمولة على جين أو أكثر والجين عبارة عن منطقة محددة على شريط المادة الوراثية تحمل DNA داخلها المعلومات الوراثية اللازمة لانتاج صفة معينة.
- يInspector الشريط الوراثي من شريط حلزوني مزدوج ملفوف ملتو على جانب من السكر والفسفات والسكل السكر الديبزكتي ريبوزي في حالة الDNA والفسفات وهو عبارة عن سل سكل حلزوني تتألف كل سلما من زوج من القواعد التيترينجينية.
- تسمى القاعدة التيترينجينية ومعها حلقة السكر الديبزكتي ريبوزي ومجموعة الفوسفات المرتبطة باسم (نيكليوتيده).
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

- القواعد النيتروجينية اثنتان ومنهما تنتميان إلى مجموعة البيروين وتسميان أدينين T ووجونين G وأثنتان تنتميان إلى مجموعة بابريميدين وتسميان ثامين RNA. وتنتمي RNA (U) بدلاً من الثامين C. وفي حالة الـ RNA، وتنتمي A وتنتمي C. ولكل درجة نساجة لا يوجد أن يقابلAny القاعدتين أدينين A وتنتمي A وتنتمي C.

- وربطهما رابطة هيدروجينية مزدوجة بينما يقابل الكثيرين C وتنتمي A برابطة هيدروجينية ثالثة.

ينقسم تتابع القواعد الذي يكون الجنس المشفر لأي بروتين على كوبونات، والكوبون هو ثلاث قواعد متتالية على طول الجنس ويقشر كل كوبون لحمض أميني واحد. ويكون الجنس من تتابع القواعد النيتروجينية بسلسلة معينة وهذا التسلسل هو الذي يعني الامر للجين لتكون بروتين معينة.

- (Recombinant DNA Technology)

تعتبر تكنولوجيا تحويل الجينات على نقاط أساسية أهمها:

1- الحصول على جزء من الشريط الوراثي الـ DNA (الجين) الذي يعبر عن البروتين المطلوب.
2- استخدام الإنزيمات المختلفة.
3- وجود الوسيط المناسب الذي يحمل عليه الجنس (Vector) خلال عملية الكلونة (Cloning).
4- وجود الفيروس أو البكتيريا التي ستنتج البروتين المطلوب.

(1) الحصول على الجين:

يعكس ترتيب الكوبونات في الجين ترتيب الأحماض الأمينية في البروتين الذي يشفر له هذا الجين. وتتم عملية ترجمة الشفرة في الجين على الشريط المزوج لـ DNA إلى الأحماض الأمينية التي تشكل البروتين وككل جين بداية ونهاية ويلزم أن يبدأ الجين ب kodon الميثيونين.
لا يتم الحصول على الجين المطلوب بطرقتين:
أ- استخدام إنزيمات التحديد والبتر لفصل الجين المطلوب من الشريحة الوراثي.
ب- استخدام تقنية تفاعل البمرة المتسلسل (PCR) لاستنساخ الجينات وتكريرها.

2) استخدام الإنزيمات المختلفة:
- تقوم خلايا البكتيريا بانتاج إنزيمات يطلق عليها إنزيمات البتر أو التحديد (Restriction Endonuclease Enzyme) تقوم هذه الإنزيمات بقطع شريحة الدنا (Recognition Sequence) عندما تتعرف على تتابع معين من النيوكليوتيدات.
- سيكون ما بين 4 و 8 النيوكليوتيدات في قطعة بين قاعدتين بذاتهاما.
- وكل إنزيم من هذه الإنزيمات لا يستطيع أن يقطع إلا عند موقع محدد على جزيء الحمض النووي.

- يوجد إنزيم آخر لا يقل أهمية عن إنزيمات القطع وهو ما يسمى بالصمع أو اللصق (Ligase Enzyme).
- ولابد أن يأتي بعد عملية القص حيث يجمع جزيئات الحمض النووي الذي تم قص إجزاء منه ليصلها بعض ويتطلب أن نقطع جزئا معينا من موقع معين على الحمض النووي واصقه بالوسيل لتحصل على الجين المحمول (Recombinant DNA).

3) الوسيط (Vector):
- يوجد نوعين من الوسيط يستخدم في تقنيات الهندسة الوراثية:
أ- البلازميدات:
- وهي توجد داخل البكتيريا ولكن لا تعتبر في تكاثرها على الشريحة الوراثي. DNA الخاص بالبكتيريا وتحتوي على شريط دائي مزدوج من ال DNA (Origin of replication)، كما أنها تحتوي على جين خاص بصفة معيينة كالمقاومة للمضادات الحيوية حتى يمكن عزل البلازميد من داخل البكتيريا بواسطة تبديتها على الوسيط الغذائي الذي يوجد به المضاد الحيوي المناسب، ويتذكر البلازميد حسب نوعية المصل المطلوب هل هو أكبر DNA فقط أو للاستجابة بروتين معين.
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

(Phage)

ب- الفاج:

هو فيروس يصيب البكتيريا حيث أنه يتتكاثر داخل البكتيريا ويمكن استخدامه كوسيلة لنقل الجينات.

4- وجود الفيروس أو البكتيريا التي ستنتج البروتين المطلوب:

من أهم الفيروسات المستخدمة لانتاج مواد مشخصة هو فيروس يصيب الحشرات ويسمى الباكيولو وتعتبر بكتيريا الإيثريسيا كولاي من أهم البكتيريا التي تستخدم حيث أنه يوجد بلازميد ويسير لكل نوع من الفيروسات أو البكتيريا المستخدمة به محفز هو جزء من الشريط الوراثي الخاص بالفيروس (Promotor) وهو جزء من التتابع الثيوكليدي من الشريط الوراثي ويتم التكاثر داخل البكتيريا أو الفيروس وإنتاج البروتين المطلوب.

إستراتيجية إنتاج مستحضرات تشخيصية باستخدام فيروس الباكيولو:

3- باستخدام إنزيم القص (Ligase) نستطيع لحام أطراف الجين (وهو جزء من الشريط الوراثي) في الفراغ بحلقة البلازميد فيتحول البلازميد إلى دائرة مرة أخرى تحتوي على الجين المطلوب.

4- يتم أدخال هذا الجين المجمع إلى حشرة خليا حشرة (SF9) وهي خليا حشرة (Spodoptera Frugiperda) بالفيروس المضاد للباكيولو ويتراقص في نفس الوقت بإدخال البلازميد المحتوي على الجين باستخدام الكبيست المختلفة المنتجة من الشركات المتخصصة.

5- ينتمي الفيروس المتنج البروتين المطلوب ويتتكاثر الفيروس منتجا البروتين المطلوب.
6- تنما الفيروسات على خلايا حشرات باستخدام تقنية (Plaquing) وذلك لاختيار الفيروس المحمل بالجين.

7- يتم اختيار الفيروس (Recombinant Virus) في خلايا الحشرات.

8- يتم تحليل البروتين الناتج للكشف عن البروتين المطلوب باستخدام تقنيات (SDS-PAGE) والـ (Western Blot).

9- يتم تحديد الوقت والعنوي التي تعطي أعلى نتيجة من البروتين.

10- يستخدم البروتين المنتج في تبطين (Coating) لإضافتها في التشخيص.

11- يمكن الحصول على البروتين المطلوب بكمية كبيرة عن طريق حقق برقة حشرة (Spodoptera Frugiperda) بالفيروس فيحدث تعبير عن الجين بنتاج البروتين المطلوب.

12- نجحت هذه الطريقة لتحضير مواد مشخصة آمنة وسهولة واقتصادية.
صورة تخطيطية لقواعد الدنا الأربعة
لا تظهر فيها ذرة كربون (ب) تتوسط الرسم في كل نقطة تتقاطع فيها رابطين كيميائيين أو أكثر (الرابطات مبينة في صورة خطة). المواقع التي لا تظهر فيها ذرة في نهاية الرابطة ضمن وجود ذرة أليفوتين.
الشكل رقم (4)
الكران القواعد
في جذور النبض المزدوج
ويمكن وضع الجدول في صورة تبين الكودونات المشفرة لكل من الأحماض الأمينية.

<table>
<thead>
<tr>
<th>الكودونات المشفرة</th>
<th>الحمض الأميني</th>
</tr>
</thead>
<tbody>
<tr>
<td>أرجينين (أرج)</td>
<td>CAG</td>
</tr>
<tr>
<td>أسبارجين (أسب)</td>
<td>AGG</td>
</tr>
<tr>
<td>حمض أسبارتيك (أسن)</td>
<td>GTT - ATT</td>
</tr>
<tr>
<td>الالانين (الا)</td>
<td>UAG</td>
</tr>
<tr>
<td>أيزوليوسين (أيز)</td>
<td>AGG</td>
</tr>
<tr>
<td>بروتينين (برو)</td>
<td>AGU - UGU</td>
</tr>
<tr>
<td>تريبتوتان (ترب)</td>
<td>AGA</td>
</tr>
<tr>
<td>تيروسين (تيرو)</td>
<td>CUA</td>
</tr>
<tr>
<td>ثروتينين (ثر)</td>
<td>CCG - CCC</td>
</tr>
<tr>
<td>جلابيسين (جلا)</td>
<td>AGA</td>
</tr>
<tr>
<td>حمض جلوتاميك (جلو)</td>
<td>GTT - ATT</td>
</tr>
<tr>
<td>جلوتامين (جان)</td>
<td>CUG</td>
</tr>
<tr>
<td>سيرين (سير)</td>
<td>AGU - UGU</td>
</tr>
<tr>
<td>سيستينين (سيس)</td>
<td>AGG</td>
</tr>
<tr>
<td>فالين (فا)</td>
<td>CGT - CCG</td>
</tr>
<tr>
<td>فينيلالانين (فيتا)</td>
<td>Phe</td>
</tr>
<tr>
<td>ليوسين (ليو)</td>
<td>UUA - UUG</td>
</tr>
<tr>
<td>ميثيونين (ميثا)</td>
<td>AUA</td>
</tr>
<tr>
<td>هستدين (هس)</td>
<td>GUA</td>
</tr>
<tr>
<td>(ويعمل أيضا كإشارة بدء)</td>
<td>AUG</td>
</tr>
<tr>
<td>(ويعمل أيضا كإشارة بدء)</td>
<td>AUG</td>
</tr>
<tr>
<td>(ويعمل أيضا كإشارة بدء)</td>
<td>AUG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>الكودونات المشفرة</th>
<th>الحمض الأميني</th>
</tr>
</thead>
<tbody>
<tr>
<td>أرجينين (أرج)</td>
<td>CAG</td>
</tr>
<tr>
<td>أسبارجين (أسب)</td>
<td>AGG</td>
</tr>
<tr>
<td>حمض أسبارتيك (أسن)</td>
<td>GTT - ATT</td>
</tr>
<tr>
<td>الالانين (الا)</td>
<td>UAG</td>
</tr>
<tr>
<td>أيزوليوسين (أيز)</td>
<td>AGG</td>
</tr>
<tr>
<td>بروتينين (برو)</td>
<td>AGU - UGU</td>
</tr>
<tr>
<td>تريبتوتان (ترب)</td>
<td>AGA</td>
</tr>
<tr>
<td>تيروسين (تيرو)</td>
<td>CUA</td>
</tr>
<tr>
<td>ثروتينين (ثر)</td>
<td>CCG - CCC</td>
</tr>
<tr>
<td>جلابيسين (جلا)</td>
<td>AGA</td>
</tr>
<tr>
<td>حمض جلوتاميك (جلو)</td>
<td>GTT - ATT</td>
</tr>
<tr>
<td>جلوتامين (جان)</td>
<td>CUG</td>
</tr>
<tr>
<td>سيرين (سير)</td>
<td>AGU - UGU</td>
</tr>
<tr>
<td>سيستينين (سيس)</td>
<td>AGG</td>
</tr>
<tr>
<td>فالين (فا)</td>
<td>CGT - CCG</td>
</tr>
<tr>
<td>فينيلالانين (فيتا)</td>
<td>Phe</td>
</tr>
<tr>
<td>ليوسين (ليو)</td>
<td>UUA - UUG</td>
</tr>
<tr>
<td>ميثيونين (ميثا)</td>
<td>AUA</td>
</tr>
<tr>
<td>هستدين (هس)</td>
<td>GUA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>الكودونات المشفرة</th>
<th>الحمض الأميني</th>
</tr>
</thead>
<tbody>
<tr>
<td>أرجينين (أرج)</td>
<td>CAG</td>
</tr>
<tr>
<td>أسبارجين (أسب)</td>
<td>AGG</td>
</tr>
<tr>
<td>حمض أسبارتيك (أسن)</td>
<td>GTT - ATT</td>
</tr>
<tr>
<td>الالانين (الا)</td>
<td>UAG</td>
</tr>
<tr>
<td>أيزوليوسين (أيز)</td>
<td>AGG</td>
</tr>
<tr>
<td>بروتينين (برو)</td>
<td>AGU - UGU</td>
</tr>
<tr>
<td>تريبتوتان (ترب)</td>
<td>AGA</td>
</tr>
<tr>
<td>تيروسين (تيرو)</td>
<td>CUA</td>
</tr>
<tr>
<td>ثروتينين (ثر)</td>
<td>CCG - CCC</td>
</tr>
<tr>
<td>جلابيسين (جلا)</td>
<td>AGA</td>
</tr>
<tr>
<td>حمض جلوتاميك (جلو)</td>
<td>GTT - ATT</td>
</tr>
<tr>
<td>جلوتامين (جان)</td>
<td>CUG</td>
</tr>
<tr>
<td>سيرين (سير)</td>
<td>AGU - UGU</td>
</tr>
<tr>
<td>سيستينين (سيس)</td>
<td>AGG</td>
</tr>
<tr>
<td>فالين (فا)</td>
<td>CGT - CCG</td>
</tr>
<tr>
<td>فينيلالانين (فيتا)</td>
<td>Phe</td>
</tr>
<tr>
<td>ليوسين (ليو)</td>
<td>UUA - UUG</td>
</tr>
<tr>
<td>ميثيونين (ميثا)</td>
<td>AUA</td>
</tr>
<tr>
<td>هستدين (هس)</td>
<td>GUA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>الكودونات المشفرة</th>
<th>الحمض الأميني</th>
</tr>
</thead>
<tbody>
<tr>
<td>أرجينين (أرج)</td>
<td>CAG</td>
</tr>
<tr>
<td>أسبارجين (أسب)</td>
<td>AGG</td>
</tr>
<tr>
<td>حمض أسبارتيك (أسن)</td>
<td>GTT - ATT</td>
</tr>
<tr>
<td>الالانين (الا)</td>
<td>UAG</td>
</tr>
<tr>
<td>أيزوليوسين (أيز)</td>
<td>AGG</td>
</tr>
<tr>
<td>بروتينين (برو)</td>
<td>AGU - UGU</td>
</tr>
<tr>
<td>تريبتوتان (ترب)</td>
<td>AGA</td>
</tr>
<tr>
<td>تيروسين (تيرو)</td>
<td>CUA</td>
</tr>
<tr>
<td>ثروتينين (ثر)</td>
<td>CCG - CCC</td>
</tr>
<tr>
<td>جلابيسين (جلا)</td>
<td>AGA</td>
</tr>
<tr>
<td>حمض جلوتاميك (جلو)</td>
<td>GTT - ATT</td>
</tr>
<tr>
<td>جلوتامين (جان)</td>
<td>CUG</td>
</tr>
<tr>
<td>سيرين (سير)</td>
<td>AGU - UGU</td>
</tr>
<tr>
<td>سيستينين (سيس)</td>
<td>AGG</td>
</tr>
<tr>
<td>فالين (فا)</td>
<td>CGT - CCG</td>
</tr>
<tr>
<td>فينيلالانين (فيتا)</td>
<td>Phe</td>
</tr>
<tr>
<td>ليوسين (ليو)</td>
<td>UUA - UUG</td>
</tr>
<tr>
<td>ميثيونين (ميثا)</td>
<td>AUA</td>
</tr>
<tr>
<td>هستدين (هس)</td>
<td>GUA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>الكودونات المشفرة</th>
<th>الحمض الأميني</th>
</tr>
</thead>
<tbody>
<tr>
<td>أرجينين (أرج)</td>
<td>CAG</td>
</tr>
<tr>
<td>أسبارجين (أسب)</td>
<td>AGG</td>
</tr>
<tr>
<td>حمض أسبارتيك (أسن)</td>
<td>GTT - ATT</td>
</tr>
<tr>
<td>الالانين (الا)</td>
<td>UAG</td>
</tr>
<tr>
<td>أيزوليوسين (أيز)</td>
<td>AGG</td>
</tr>
<tr>
<td>بروتينين (برو)</td>
<td>AGU - UGU</td>
</tr>
<tr>
<td>تريبتوتان (ترب)</td>
<td>AGA</td>
</tr>
<tr>
<td>تيروسين (تيرو)</td>
<td>CUA</td>
</tr>
<tr>
<td>ثروتينين (ثر)</td>
<td>CCG - CCC</td>
</tr>
<tr>
<td>جلابيسين (جلا)</td>
<td>AGA</td>
</tr>
<tr>
<td>حمض جلوتاميك (جلو)</td>
<td>GTT - ATT</td>
</tr>
<tr>
<td>جلوتامين (جان)</td>
<td>CUG</td>
</tr>
<tr>
<td>سيرين (سير)</td>
<td>AGU - UGU</td>
</tr>
<tr>
<td>سيستينين (سيس)</td>
<td>AGG</td>
</tr>
<tr>
<td>فالين (فا)</td>
<td>CGT - CCG</td>
</tr>
<tr>
<td>فينيلالانين (فيتا)</td>
<td>Phe</td>
</tr>
<tr>
<td>ليوسين (ليو)</td>
<td>UUA - UUG</td>
</tr>
<tr>
<td>ميثيونين (ميثا)</td>
<td>AUA</td>
</tr>
<tr>
<td>هستدين (هس)</td>
<td>GUA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>الكودونات المشفرة</th>
<th>الحمض الأميني</th>
</tr>
</thead>
<tbody>
<tr>
<td>أرجينين (أرج)</td>
<td>CAG</td>
</tr>
<tr>
<td>أسبارجين (أسب)</td>
<td>AGG</td>
</tr>
<tr>
<td>حمض أسبارتيك (أسن)</td>
<td>GTT - ATT</td>
</tr>
<tr>
<td>الالانين (الا)</td>
<td>UAG</td>
</tr>
<tr>
<td>أيزوليوسين (أيز)</td>
<td>AGG</td>
</tr>
<tr>
<td>بروتينين (برو)</td>
<td>AGU - UGU</td>
</tr>
<tr>
<td>تريبتوتان (ترب)</td>
<td>AGA</td>
</tr>
<tr>
<td>تيروسين (تيرو)</td>
<td>CUA</td>
</tr>
<tr>
<td>ثروتينين (ثر)</td>
<td>CCG - CCC</td>
</tr>
<tr>
<td>جلابيسين (جلا)</td>
<td>AGA</td>
</tr>
<tr>
<td>حمض جلوتاميك (جلو)</td>
<td>GTT - ATT</td>
</tr>
<tr>
<td>جلوتامين (جان)</td>
<td>CUG</td>
</tr>
<tr>
<td>سيرين (سير)</td>
<td>AGU - UGU</td>
</tr>
<tr>
<td>سيستينين (سيس)</td>
<td>AGG</td>
</tr>
<tr>
<td>فالين (فا)</td>
<td>CGT - CCG</td>
</tr>
<tr>
<td>فينيلالانين (فيتا)</td>
<td>Phe</td>
</tr>
<tr>
<td>ليوسين (ليو)</td>
<td>UUA - UUG</td>
</tr>
<tr>
<td>ميثيونين (ميثا)</td>
<td>AUA</td>
</tr>
<tr>
<td>هستدين (هس)</td>
<td>GUA</td>
</tr>
<tr>
<td>الطراف</td>
<td>التتابع على الجينات</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>جافة</td>
<td>0-ج.ج.ج.ج</td>
</tr>
</tbody>
</table>
إنتاج الأنساب المناعية
وحيدة النوع والصفة
Monoclonal Antibody Production

Eradication of the disease in a unique way and the formula

The preparation of the immunocompound and the unique type of

Preparation by Dr. Mohamed Osman

Chief of Research in the Department of Laboratory Diagnostics

Institute for Laboratory Diagnostics and Vaccinations

The immunocompound and the unique type of

The cellular fusion of the immunocompound and the unique type of

Production of the immunocompound and the unique type of

The resulting cell containing a specific

Production of the immunocompound and the unique type of

The resulting cell containing a specific

Myloma

B-lymphocyte

Hybridoma

End of the cellular fusion process

Production of the immunocompound and the unique type of

The resulting cell containing a specific

Production of the immunocompound and the unique type of

The resulting cell containing a specific
نظرية إنتاج الأجسام المناعية وحيدة النوع والصفة:

إعتمدت العالمان كوهال وميستين على النظرية الاختيارية لمجموع الخلايا، وهذه النظرية توضح أنه عند حرق أي أنواع من الجزيءات في داخل جسم الكائن الحي يتضح كل جزء من ذلك الانتيجن مع خلايا واحدة فقط من خلايا إنتاج الأجسام المناعية. هذه الخلايا تم فصلها وتكاثرها بطريقة مفيدة.

١- حضانة غاز ثاني أكسيد الكربون (نسبة الغاز داخل الحضانة 5٪).
٢- خزان سائل نيتروجين.
٣- كابينة معقمة.
٤- أجهزة طرد مركزي مبرد وعادي.
٥- مجهر مقلوب لفحص خلايا الزرع النسيجي.
٦- مجهر ضوئي عادي.
٧- جهاز عد خلايا الدم.
٨- مرشح بكتيري معقم كبير وصغير.
٩- حمام مائي.
١٠- ديب فريزر (٢٠ م) و (٨٠ م).
١١- جهاز التحليل الكهربائي.
١٢- جهاز تنقل البروتين.
١٣- فلاسكات معقمة للزرع النسيجي باحمام مختلفة وكذلك أطباق بتري معقمة.
١٤- مصادر معقمة ملائمة مختلفة.
١٥- أطباق للزرع النسيجي ٩٦ و ٢٤ عين معقمة، وأطباق للالليزا ٩٦ عين مسطحة القاعدة.

الجهزة والمواد المستخدمة في إنتاج الأجسام المناعية وحيدة النوع والصفة:
16- ميكروبيت قناة واحدة باحجام مختلفة.
17- ميكروبيت 8 أو 12 قناة.
18- أنابيب ستنترفيرج مقاسات 15 سم و 50 سم.
19- أنابيب إيندوري مقاسات مختلفة.
20- أقماج بلاستيك صفراء وزرقاء.
21- أنابيب بفترات تتحمل التبريد لدرجات عالية.

(RPMI-1640)
Foetal calf serum
22- مصل اجنة عجل
Bovine serum albumin
23- زلال مصل العجل
24- بولي إيثيلين جليكول نو وزن جزيئي 1000-1500.
25- تونين 20.
26- جلولاتين - صوديوم بير وفات.
27- بنسلين وستريتوسيتين.
28- الكيمياويات الخاصة بالأنزيمات.
29- الكيمياويات الخاصة بالتحليل الكهربائي.
Western blot
30- الكيمياويات الخاصة بالتحليل الكهربائي اللطبي.
31- الكيمياويات الخاصة بالتحليل الكهربائي اللطبي.
32- ميوريزين - ميدين - أمينوبترين.
33- فئران سويسريه نوع بالب سي.
34- خلايا سرطانية نوع (DMSO)
35- داي ميثير سلفوكسيد (Pristan)
36- مساعد الماسات الكهربائي.
Conjugate
37- أجسام مناعية ضد الفئران.
المادة الغذائية والمحاليل المستخدمة:

1- الوسط الغذائي RPMI 1640 الكامل ويكون من:
 - RPMI 1640 المعقم مضاف اليوه
 - 10% مصل اجنة العجل
 - 2 جزئي ل - جلوتامين معقم.
 - 1% بيروفيتي الصوديوم المعقم.
 - 5 وحدة دولية / ملي بنسلين وستربتوميسين.
2- الوسط الغذائي RPMI 1640 الغير كامل:
 - نفس مكونات الكامل ولكن بدون مصل اجنة العجل.
3- مركب الثييميدين (HT) + الهيبوزانتين (100 قوة).
 - 38.75 ملليجرام ثييميدين
 - 136.10 ملليجرام هيبوزانتين
 - 100 مللي ماء مقطر
 - يعم بالترشيع وينحف زرة تبريد (-20 م).
4- مركب الامينوبترتين (A) (100 قوة):
 - 1.76 ملليجرام / 100 مللي ماء مقطر
 - يعم بالترشيع وينحف عند زرة - 20 م.
5- الوسط الغذائي الكامل RPMI 1640:
 - وسط غذائي ثييميدين + هيبوزانتين + أميبوتروتين (HAT) ويكون من:
 - بإضافة إلى كل من مركب الثييميدين هيبوزانتين ومركبة الامينوبترتين ليصبح المركب (1 قوة).
6- الوسط الغذائي هيبرزانتين + فيمدين (HT) ويتكون من:
الوسط الغذائي RPMI-1640
مضاد الهيبرزانتين والثيودين ليصبح (1 قوة).
7- محلول بولي إيثيلين جليكون 50% ويتكون من:
وزن البولي إيثيلين جليكون المحصور.
الغير كامل ويعقم بالأسكد كلف عند الاستخدام فقط.
8- الوسط الغذائي لتكبير الخلايا ويتكون من:
10% داي ميثيل سلفوكسيد.
40% مصل أجنحة العجل.
50% الوسط الغذائي RPMI-1640 الغير كامل.
يعقم بالترشيح ويوصف ويحصف عند درجة تبريد (−20°C).
9- مصل زلال العجل في محلول الملح الفوسفاتي:
يستخدم بنسبة 2%.
10- محلول الملح الفوسفاتي ويتكون من:
كلوريده الصوديوم 8 جرام
فوسفات ثنائي البيتايسوم 1.21 جرام.
فوسفات البيتايسوم القاعدي 0.34 جرام.
تذاب الكميات في 1 لتر ماء مقطر وتضغط درجة الآس الهيدروجيني عند 7.2 ثم
يعقم بالأسكد كلف.
بضاف إليه 0.05% توين 20 ويستخدم كمحلول غسيل وتخفيض في اختبار الاليزا.
الطريقة إنتاج الأجسام المناعية وحيدة النوع والصفة:

وتم خلال 3 مراحل:

أ- حقن الفئران.
ب- عمل الاندماج للخلايا.
ت- عمل التخفيف للإجسام المناعية المنتجة.

أ- حقن الفئران:

Incomplete Freund's ad-
1- يخلط الانتيتيج بالمساعد فروندز الفير كامل
2- يحضر على الأقل ثلاثة من الفئران السويسرية عمر 6-8 أسابيع ويحقن كل
3- تعطى الجرعة الثانية بعد 15 يوم من الجرعة الأولى بنفس الكمية وطريقة
4- تعطى الجرعة الثالثة بعد 15 يوم من الثانية وقبل عمل الاندماج بثلاثة أيام ولكن
بالانتيتيج فقط وبنفس الكمية وطريقة الحقن.

ب- طريقة عمل إندماج الخلايا:

1- قبل عمل الاندماج بخمسة أيام تحضر الخلايا السرطانية المحفوظة في السائل
2- في اليوم التالي يضاف إلى الخلايا كمية 5 ملي من الوسط الغذائي الكامل RPMI-1640 1000 لفة/دقائق ويتخلص من السائل
3- يوضع الخلايا في فلزية الزراعة النسيجي الموجود بها 5 ملي من الوسط الغذائي الكامل RPMI-1640
4- ويفحص نجاح الزراعة النسيجي لتأكيد من حيوية الخلايا. ثم توضع بعد ذلك في حضانة غاز ثاني أكسيد الكربون
5- وفي اليوم التالي يضاف إلى الخلايا كمية 5 ملي من الوسط الغذائي الكامل RPMI-1640
6- يتم عد الخلايا السرطانية بعد 15 يوماً بأن يؤخذ 15 ميكروليتر من الخلايا
7- وتخليط مع نفس الكمية من التربين الأزرق ووضع في المربيع الأوسط لشريحة
8- عداد الدم وعدد الخلايا في الأربع أركان ويؤخذ متوسطها كما في الرسم.
التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

تمدد الخلايا الحية فقط حيث أن الخلايا الحية تكون غير ملونة والخلايا الميتة تأخذ اللون الأزرق. ويحسب عدد الخلايا الموجودة في المليتر الواحد بالمعادلة التالية:

4 عالم التخفيف x 10 = عدد الخلايا/مللي

3- تنقل الكمية من الفلاسكة التي تحتوي على عدد خلايا 1-2 x 10 خليية إلى فلاسكة نتسيجي تحتوي على 100 مللي من الوسط الغذائي الكامل بحيث يصل عدد الخلايا وقت الاندماج إلى 1-7 x 10 خليية.

4- يقتل الفائر المحقون بطريقة فصل النخاع الشوكي ويشرح ويتم ذلك داخل الكابينة المعقمة وبدأوات تشريح معقمة.

5- يأتي بثلاثة أطباق بترية معقمة ويوضع لكل منها حوالي 6 مللي من الوسط الغذائي الغير كامل RPMI-1640.

6- يوضع الطحال في الطبق الأول وينزع منه الدهون والأغشية المحيطة به ثم ينقل إلى الطبق الثاني لنظفاً.
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

محاضرة

18- تفحص الخلايا يوميا بمجهر خلايا الزرع النسيجي حتى تجمع الخلايا مع بعضها (clone) ثم يعمل لها اختبار الأليلزا لمعرفة تكوين الأجسام المناعية من عددهم.

19- العيون الإيجابية لاختبار الأليلزا تنقل إلى أطباق 24 عين ويوضع في كل عين 0.5 مللي من الوسط الغذائي HT لان الامينوتترین سام للخلايا ثم وضع الاطباق في حضانة غاز ثاني اكسيد الكربون وبعد يومين تغذى الخلايا بكمية 0.5 مللي لكل عين من نفس الوسط الغذائي HT. وتترك لمدة أسبوعين ثم يعاد اختبار الأليلزا والعين الإيجابية للاختبار يعمل لها تخزين وايضا تتجدد الخلايا في تلك المرحلة.

طريقة عمل تخزين مجاميع الخلايا

تستخدم خلايا الغدة الثنيمة Thymus gland cells في هذه الطريقة كالآتي:

1- يحضر فاز سوسيسي من نفس النوع عمر 3-4 أسابيع ويقتل كما سبق وتناخد الغدة الثنيمة بطريقة سليمة ومعقمة تحلق الغدة ويشبه الوسط الغذائي RPMI الكامل ثم تصفى خلاخل مصفاة وتتغسل بنفس الوسط الغذائي.

2- تعد الخلايا بنفس طريقة عدد خلايا الطحال وتزوع الخلايا في أطباق زرع نسيجي 96 عين بحيث تحتوي كل عين (0.1 مللي) على 5 x 10^6 خلية.

3- تأخذ الخلايا المنجمة من طبق الزرع النسيجي وتوضع كل عين من الطبقة في فلاسفة الزرع النسيجي التي تحتوي على 10 مللي من الوسط الغذائي HT ثم توضع في الحضانة لمدة 24 ساعة.

4- يتم عداد تلك الخلايا بنفس طريقة عدد الخلايا السرطانية وبواسطة الجدول (في الصفحة التالية) تأخذ الكمية من الفلاسفة التي تحتوي على عدد 200 خليه RPMI الكامل وتوضع في فلاسفة بها 5 مللي من الوسط الغذائي RPMI الكامل.

5- توزع 2.5 مللي من الفلاسفة في الصفوف الثلاثة الأولى من الطبقة الذي يحتوي على خلايا الزرع الثنيمة ثم توضع كمية من الوسط الغذائي تعادل 2.5 مللي في الفلاسفة ثم توزع 2.5 مللي أخرى في الصفوف الثلاثة وهكذا تكرر نفس

83

إعداد المكتبة العربية للتنمية الزراعية
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

العملية حتي ينتهي وضع الخلايا في الطباق، ثم توضع نقطة واحدة من الوسط الغذائي فقط في الثلاث صفوف الأخيرة من الطباق. لو وجد أكثر من طبق به خلايا الغدة الثيمية دائما نبدأ بالكمية التي تحتوي على 200 خلايا لكل طبق وتكرر كما سبق الطريقة حتي يتم انتهاء من الاطباق كلها.

7- تفحص الاطباق يوميا بالمجهر حتي يرى تكوين مجموعة واحدة فقط في العين.

8- يجري اختبار الالبزا للعين التي بها مجموعة واحدة.

9- يجري اختبار التحليل الكهربائي اللطبي للتأكد من أن Western blot الأجسام المنتجة هي الخصائص بلانتيجين المحقون.

10- بعد التأكد من الوصول إلى خط ثابت من الأجسام المناعية تزرع الخلي في زجاجيات رو لضخاعة كميتها وتجد للحفظ في السائل النيتروجيني أو تحقق في فئران لنتج الأجسام مناعية بطريقة سائل الاستسقاء.
<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
</tr>
</tbody>
</table>
خطوات اختبار الإليزاز:

1- تبطن الاطباق (96 عين مسطحة القاعدة) بالانتيجين ويتوسط طول الليل بالحضانة أو الثلاثة الهادئة.
2- تفصل الاطباق بمليء العين بمحلول الملح الفوسفاتي المضاف إلى تومن 20 ميكروالتر وتحضن ثلاث مرات.
3- يوضع محلول زلال مصل الأبقار (2/100) في كل عين 200 ميكروالتر وتحضن الاطباق لمدة ساعة بالحضانة.
4- تفصل الاطباق كما سبق 3 مرات.
5- توضع الأجسام المناعية المراد اختبارها (50 ميكروالتر لكل عين) وتحضن في الحضانة لمدة ساعة.
6- تفصل الاطباق كما سبق.
7- توضع الأجسام المناعية ضد النوع (ضد الفيروس) 50 conjugate ميكروالتر/عين بعد تخفيفها التخفيف المناسب وتوضع الاطباق في الحضانة لمدة ساعة.
8- تفصل الاطباق كما سبق.
9- يوضع الكاشف 100 ميكروالتر/عين وتترك الاطباق في الظلام لمدة 5 دقائق أو إلى أن يظهر لون أزرق أو أصفر حسب نوع الكاشف.
10- يوقف التفاعل يوضع 50 ميكروالتر من 2 جزء حامض كربيتيك مركز.
11- تقرأ الاطباق بقاريء الأليزا.

اختبار التحليل الكهروكيي اللطفي:
1- يحضر الجل المكون من (الأكريلاميد - بس اكريلاميد - صوديوم نودوسيل سلفات) للتحليل الكهروكيي.
2- يمرر لانتيجن في الجل ويحلل كهربائيًا.
3- تطبع بروتينات الانتيرون الموجودة على الجل على ورق النتروسليلوز في جهاز نقل البروتين ويتوقف في ثلاثة طوال الليل.
4- يغسل ورق النتروسليلوز ثلاث مرات بمحلول الملح الفوسفاتي المضاف إلى توين 20 (0.5%).
5- يوقف التفاعل لورق النتروسليلوز بوضعة في محلول يحتوي على 10% منزوع الدسم وت böين 20 لمدة ساعة على الهرتز.
6- يغسل الورق كما سابق 3 مرات بمحلول الملح الفوسفاتي.
7- توضع الأجسام المناعية المراد اختبارها على ورق التتروسليلوز وتوضع على الهزاز لمدة ساعة.
8- تسجل ثلاث مرات كما سابق.
9- توضع الأجسام المناعية ضد الفئر (goat anti-mouse conjugate) بعد تخفيفها حسب النشرة وتوضع على ورق التتروسليلوز وتوضع على الهزاز لمدة ساعة.
10- يغسل الورق ثلاث مرات كما سابق.
11- توضع المادة الكاشفة (أمينوبيردرين) على ورق التتروسليلوز لمدة 5 دقائق.
12- يوقف التفاعل بالغسل في محلول الملح الفوسفاتي (PBS).
13- الاختبار الإيجابي يظهر خط واحد فقط بني اللون.

طريقة تجميد الخلايا (السرطانية أو المدمجة):

1- يأتي بالوسط الغذائي الخاص بالجميد ويتورك ليسيل في درجة حرارة الغرفة.
2- تعلم أنابيب التجميد (يكتب عليها كل المعلومات للخلايا مثل نوعها والتاريخ واسم القائم بعملها وأي نوع من الانتيرون) وهي موضوعة في الالج.
3- تدور الخلايا (السرطانية أو المدمجة) عند 800-1000 لفة دقيقة لمدة خمس دقائق.
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

- يسكر السائل العلوي ويضاف للخلايا الوسط الغذائي الخاص بالتمجيد بحيث
 يحتوي كل 1 مللي على عدد 1-2 × 10^7 خليلا.

- يوزع 1 مللي في كل أنبوية والانابيب موضوعة في الثلج وحين الانتهاء من
 توزيع الخلايا توضع الانابيب في الفريزر (درجة تجمد - 20°م) لمدة نصف
 ساعة.

- تتقلل الانابيب بعد ذلك إلى فريزر آخر بدرجة تجمد -80°م أو -100°م فترة
 طول الليل ثم بعد ذلك تنقل الانابيب إلى خزان السائل التبريدي.

- الخلايا المحفوظة في السائل التبريدي تجذب زرعها وتجميدها مرة أخرى
 مرة كل ستة أشهر.

إنتاج الأجسام المناعية وحيدة النوع والصفة بطريقة سائل الاستسقاء:

1- تحقق الفترات السوسيرية 0.5 مللي في البريروتون بمادة البرستان (6.2، 10،
14 تتراميلب بنتاديكان) لوقف عمل الجهاز المناعي.

2- بعد ستة أسابيع من حقيق تلك المادة تحقق خلايا الأجسام المناعية وحيدة النوع
والصفة بنسبة 5 × 10^6 خليلا لكل 1 مللي لكل فاز داخل البريروتون.

3- تراقب الفترات يوميا إلى اليوم السابع بعد حقيق الخلايا حتى تمثل، بطن الفار
بالسائل، في ذلك الوقت يسحب السائل بحققة معقمة من بطن الفار.

4- يوضع السائل في الحضانة 37°م لمدة نصف ساعة حتى تتجلى المواد الصلبة
فيه.

5- يأخذ السائل ويوضع عليه 3 ميكرومتر من 10% مادة الابيدتا (EDTA)
لكل مللي من السائل ويحضر عند درجة 2-8°م لمدة أسبوعين.

6- يعبر السائل بالاليزرا ثم يضاف اليه أزيد الصوديوم كمادة حافظة بتركيز
0.2%.

7- يصف السائل بالشاش المعقم ويوزع في أنابيب التجميد ويحفظ في درجة
تجمد -80°م.
ملحوظة:

1- لا يجوز استئناف درجة معايرة أقل من 1/4000

2- الأجسام المناعية وحيدة النوع والصفة المنتجة قوته 1 ميلي مثلي منها تعادل 1000 ميلي من الأجسام المنتجة بطريقة الزرع النسيجي.
اختبار المكمل المثبت

إعداد
أ.د. سمية عبدالسلام الكيلاني
رئيس بحوث - قسم الحمي القلاعية

المواد المستخدمة: 1) المحاليل:

* محلول الفيرونان:

1) بيكربونات الصوديوم 0.75 غ في ماء مقطر بارد
حمض البوتريك 0.35 غ في ماء مقطر دافئ
صوديوم كلوادي 23.98 غ
بروتيتينات الصوديوم 0.90 غ
كالسيوم الكالسيوم 0.30 غ
كالسيوم الكالسيوم 0.66 غ
ويكمل 600 مل ماء مقطر مرتين
محلول (أ) + محلول (ب)
ويتشرش ثم يقاس الأس الهيدروجيني (7.4)

محلول الأكسفري:
ويتكون من: ديكستروز 20.5 جم
سترات الصوديوم 8 جم
حمض الستريك 55 جم
كلوريد الصوديوم 4.20 جم
في ماء مقطر مرة واحدة 1000 مل ثم يرشح.
اختبار المكمل المثبت

التعريف والهدف من التجربة:
أن تجربة المكمل المثبت من التجارب العملية التي تستخدم في تشخيص الأمراض الفيروسية والبكتيرية حيث أنها تكشف عن وجود مسببات الأمراض و أيضاً تكشف عن وجود الأجسام المناعية المضادة لهذه الأمراض في سيرم الحيوانات المختلفة.

الفكرة الأساسية للتجربة:
الفكرة التي بنيت عليها التجربة هي عندما يحدث إتحاد بين الأنتيجين والأجسام المضادة الخاصة به فهذ الإتحاد بثت المكمل المستخدم و بذلك لا يحدث تكسير لكرات الدم الحمراء المستخدمة ككشف للتجربة حيث أنه عندما يحدث تكسير لكرات الدم الحمراء فهذا يدل على عدم وجود المادة البيولوجية المراد الكشف عنها (الأنتيجين - الأجسام المضادة).

الادوات المستخدمة في التجربة:
1- أطباقي خاص بالتجربة 96 عين شكل U
2- ماسات ميكرومتر
3- جهاز طرد مركزي
4- جهاز مزاز للإطباق
5- حضنات بكتيرولوجية عن درجة حرارة 37م

2- كاشف اختبار المكمل المثبت (مركب تكسير كرات الدم الحمراء)

يتكون من:
أ- كرات الدم الحمراء للاقنان:
كميات متساوية من دم الإقناع و محلول السيفيز المعدل تخلط جيداً معاً و يبود هذا الدم عند 1500 دورة في الدقيقة لمدة 15 دقيقة ثم يفصل بمحلول فيرونال عدة مرات حتى تصبح الطبقة العليا رائحة ثم يستعمل كمفاعل 2/2.

الإجسام المناعية المضادة لكرات الدم الحمراء (مضادة لكرات دم الإقناع الحمراء)
الممنع لكرات الدم الحمراء للإقناع يحضر في الأرانب.
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

معايرة الاجسام المناعية المضادة لكرات الدم الحمراء

<table>
<thead>
<tr>
<th>المحكم (كمترول)</th>
<th>تخفيف الاجسام المناعية المضادة لكرات الدم الحمراء</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/1</td>
<td>100/1</td>
</tr>
<tr>
<td>150/1</td>
<td>150/1</td>
</tr>
<tr>
<td>200/1</td>
<td>200/1</td>
</tr>
<tr>
<td>12800/1</td>
<td>12800/1</td>
</tr>
<tr>
<td>19200/1</td>
<td>19200/1</td>
</tr>
</tbody>
</table>

كميات المواد المستخدمة

<table>
<thead>
<tr>
<th>كرات دم حمراء للفحص</th>
<th>المكمل 1/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 ميكروليتر</td>
<td>10/1</td>
</tr>
<tr>
<td>25 ميكروليتر</td>
<td></td>
</tr>
<tr>
<td>25 ميكروليتر</td>
<td></td>
</tr>
<tr>
<td>50 ميكروليتر</td>
<td></td>
</tr>
</tbody>
</table>

المحلول فيرونال

النتيجة النهائية: إن أكبر تخفيف يعطى 100/1 تكسرات الدم الحمراء يعتبر كوحدة عيارية واحدة من الأجسام المضادة لكرات الدم الحمراء.

مثال: إذا كان التخفيف 1/2400 تستخدم 4 وحدات منه = 1/1 2400 4 = 600/1 يستخدم في هذا الاختبار.

لتحضير مركب تكسر كرات الدم الحمراء يضاف كميات متساوية من 2/1 من كرات الدم الحمراء = 4 جرعة من الحد الآمن لعبارة الأجسام المضادة.

المكمل هو: مصل طازج طبيعي من الأردان البشري خالي من الأمراض ويخفظ عند درجة حرارة 70/7 تحت غلاية صغيرة.

معاير المكمل في وجود الإنتاج:

- المكمل: 25 ميكروليتر لكل تخفيف 1/1.5/1.5/2.5/3/6
- الإنتاج: 25 ميكروليتر (من أول تخفيف مستخدم).

محلول فيرونال 25 ميكروليتر

مركب تكسر كرات الدم الحمراء 50 ميكروليتر
الدواء التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

المصل الممنع: 25 ميكرولتر من تخفيف 10/1.
المكمل: 1/1, 1.5/1, 2/1, 2.5/1, 3/1, 3.5/1 — 6/1
- محلول فيروتال 25 ميكرولتر
- مركب تكسير كرات الدم الحمراء 50 ميكرولتر — يحضن عند 37 لدة دقيقة

عند قراءة المعايرة نجد أن تخفيف يعطي شكل على هيئة زرار.

<table>
<thead>
<tr>
<th>المحكم</th>
<th>مع المكمل</th>
<th>بدون المكمل</th>
</tr>
</thead>
<tbody>
<tr>
<td>غير مخفف</td>
<td>25 ميكرولتر</td>
<td>25 ميكرولتر</td>
</tr>
<tr>
<td>غير مخفف</td>
<td>25 ميكرولتر</td>
<td>25 ميكرولتر</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>25 ميكرولتر</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>25 ميكرولتر</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>50 ميكرولتر</td>
</tr>
</tbody>
</table>

التخفيف الإنتاجي

| كمية المواد المستخدمة | الانتيجن
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>المصل المناعي</td>
</tr>
<tr>
<td></td>
<td>المصل (وحدة واحدة)</td>
</tr>
<tr>
<td>محلول فيروتال</td>
<td>مركب تكسير كرات</td>
</tr>
<tr>
<td>—</td>
<td>الدم الحمراء</td>
</tr>
</tbody>
</table>

النتيجة: أكبر تخفيف يعطي 25-50٪ تكسير لكرات الدم الحمراء.
الطرق المختلفة لعزل الفيروسات على البيض المخصب
1- غشاء قشرة البيضة:
غشاء لبى خشن يقع مباشرة تحت قشرة البيضة يغلف كل السطح الداخلي للبيضة ويكون الغرفة الهرائية عند السطح العريض للبيضة.
كامل من غشاء قشرة البيضة وقشرة البيض يساهموا على حفظ سلامة البيضة من الميكروبات ويسهموا بانتشار الغازات من وإلى البيضة.

2- الغشاء اللقيائي CAM:
يقع مباشرة تحت غشاء قشرة البيضة وهو غنٍ باللقياوة الدموية ووظيفته تبادل الغازات وهو بمثابة الجهاز التنفسي للجنين.
وأثناء مرحلة نمو الجنين فإن هذا الغشاء يكون تجويفاً كبيراً يسمى الكيس الالنتوسي يحتوي على 5-10 مل من السائل الالنتوسي.

3- الغشاء الأمينوسي:
بкат الجنين بغشاء يسمى الغشاء الأمينوسي ويحتوي على 1-2 مل من السائل الأمينوسي.
4- كيس الحبل:
يقع كيس الحبل تقريبا في منتصف الب厢ة ويتصل بالجنين ووظيفته مد الجنين بالمواد الغذائية اللازمة للنمو.

طرق حقن البيض:

توجد 4 طرق رئيسية لحقن البيض كالآتي:

1- الحقن في التجويف الألنتوسي.
2- الحقن في كيس الحبل.
3- الحقن على الغشاء اللانقي.
4- الحقن في التجويف البليسي.

1- الحقن عن طريق التجويف الألنتوسي:

Fig. 3. Allantoic route of inoculation, Method B (After Hawkes [2]).
3- الحقن عن طريق الغشاء اللقاني:

* يجب أن يكون عمر الاجنة من 10-11 يوم.
* يتم عمل علامة على جانب البيضة على طول المحور الطولي وفي منتصف المسافة تقريبا حيث توجد الأوعية الدموية.
* يتم وضع البيضة أفقيا ويظهر الجزء الملوئي والجنب من البيضة.
* يتم عمل ثقبين احدهما في منتصف الغرفة الهوائية والآخر على جانب البيضة بحيث لا يخدش غشاء قشرة البيضة.
* بواسطة الكشف الكهربي وباستخدام جهاز الشفط يتم ازالة الغشاء الالنتوسي عن طريق شفط الهواء من الثقب الموجود باعلى البيضة (يتم سحب الهواء من الغرفة الهوائية وتكوين غرفة هوائية زائفة جديدة فوق الغشاء الالنتوسي).
* يتم اغلاق الثقب الموجود باعلى البيضة بشعع البراقين ويمحتن وضع البيضة أفقيا.
* باستخدام حبقة انسولين يتم حقن 1-2 من مادة الحقن وذلك بانزال الابرة رأسها داخل قشرة البيضة.
* يتم اغلاق الثقب و يتم وضع البيضة في الحضانة لمدة 5-7 أيام مع الاحتفاظ بوضعها أفقيا طوال فترة التحضين.
* تستخدم هذه الطريقة في تحضير لقاحات التهاب الحنجرة والقصبة الهوائية المعدية، الجدري، الربو، والحمور.

Fig. 6. Amniotic route of inoculation (After Hawkes [2]).
4- الحقن عن طريق الكيس الامنيوي:
* يجب أن يكون عمر الاجنة من 10-11 يوم
* التأكد من وضع البيضة رأسيا بحيث تكون الغرفة الهوائية لأعلى.
* يتم تطهير السطح العلوي للبيضة.
* يتم عمل علامة على مكان الجنين.
* يتم عمل ثقب أعلاى الغرفة الهوائية.

باستخدام حقنة ذات أبيرة طولها 38 مم يتم توجيه الإبرة ناحية مكان الجنين (باستخدام الكشاف الكهربائي) ويتم حقن 1-2 مل من مادة الحقن.
* يتم اغلاق الثقب ووضع البيضة في الحضانة لمدة 2-4 أيام.

تستخدم هذه الطريقة في تحضير لقاحات النيوكاسال والالتهاب الشعبي.
<table>
<thead>
<tr>
<th>وقت التجميع - الإجابة المتجمعة (ساعة)</th>
<th>تأثير الفيروس على الإجابة</th>
<th>طريقة الهجرة المناسبة عند الحقن (يوم)</th>
<th>عمر الحقن عند الحقن (يوم)</th>
<th>اسم الفيروس</th>
</tr>
</thead>
<tbody>
<tr>
<td>السوائل الجنينية 96</td>
<td>نقطة نزفية على الرأس والأنف خاصة النازل المنوي</td>
<td>التجريح الاستئصالي</td>
<td>10</td>
<td>كورنوفير</td>
</tr>
<tr>
<td>السوائل الجنينية 72</td>
<td>نقطة لحم النازل على نفسه والقلب في الكلي والهال</td>
<td>التجريح الاستئصالي</td>
<td>10</td>
<td>البروكس (هتشر)</td>
</tr>
<tr>
<td>السوائل الجنينية 36</td>
<td>نقطة نزفية على الرأس والأذن والأنف</td>
<td>التجريح الاستئصالي</td>
<td>10</td>
<td>التهاب الشعيب</td>
</tr>
<tr>
<td>5 أيام الفضاء القانوني</td>
<td>نقطة نزفية على الرأس والأذن والأنف</td>
<td>التجريح الاستئصالي</td>
<td>10</td>
<td>التهاب النازل، انتفاخها، انتفاخ، نازل بالضنة، نازل باللحم والقلاع، نازل بالقلاع، نازل بالقلاع، نازل بالقلاع</td>
</tr>
<tr>
<td>5 أيام الإجابة مثلة من 3-5 بيم</td>
<td>نقطة نزفية على الرأس والأذن والأنف</td>
<td>التجريح الاستئصالي</td>
<td>10</td>
<td>التهاب النازل، انتفاخها، انتفاخ، نازل بالضنة، نازل باللحم والقلاع، نازل بالقلاع، نازل بالقلاع، نازل بالقلاع</td>
</tr>
<tr>
<td>5 أيام الإجابة مثلة من 3-5 بيم</td>
<td>نقطة نزفية على الرأس والأذن والأنف</td>
<td>التجريح الاستئصالي</td>
<td>10</td>
<td>التهاب النازل، انتفاخها، انتفاخ، نازل بالضنة، نازل باللحم والقلاع، نازل بالقلاع، نازل بالقلاع</td>
</tr>
<tr>
<td>تأثير الفيروس على الاجنة</td>
<td>طرقية الحفر المناسبة</td>
<td>عمر الحفر (يوم)</td>
<td>اسم الفيروس</td>
<td>الارتعاشات</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ضمور في الغدد</td>
<td>كيس</td>
<td>5-7</td>
<td>الرايتالي</td>
<td></td>
</tr>
<tr>
<td>ضمور في العضلات</td>
<td>عمق الفجوات الحركي المضاغ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تسمم الفم مع وجود مناطق</td>
<td>الغشاء</td>
<td>10-12</td>
<td>الرايتالي</td>
<td></td>
</tr>
<tr>
<td>للقانثي</td>
<td>ممتة منتشرة عليه (pock le sions)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تطور الجرثوم نتيجة الامراض المائية</td>
<td>الغشاء</td>
<td>10-11</td>
<td>الرايتالي</td>
<td></td>
</tr>
<tr>
<td>واحتقانه</td>
<td>القانثي</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>يعمل على الكبد إلى الاكشرار مع وجود بقع نزفية على الكبد</td>
<td>التضاريس الطلاش والاحتقان مع تغير لون السوائل الجلدية إلى اللون الاصفر أو الذهبي</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>تورم الاجنحة</td>
<td>التجفيف</td>
<td>10</td>
<td>الهالوسي</td>
<td></td>
</tr>
<tr>
<td>تورم الاجنحة مائي خاصة في منطقة الرأس انشقة شديدة في تجفيف الجنين مع ضمانت في الكبد والاطلال مع وجود بثر نزفية وبكتيريا حمراء</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
استخدام تقنية الأليزا
إعداد تقنية الألبيزا

أ.د. سعاد محمد سليمان
رئيسي قسم اللقاحات الجلدية

ENZYME-LINKED IMMUNOSORBENT ASSAY

يعتمد هذا الاختبار على العلاقة التداخلية بين الجسم المناعي والميكروب

ANTIGEN-ANTIBODY INTERACTION

ويستخدم هذا الاختبار لتحديد نوع الجسم المناعي وذلك باستخدام ميكروب

معروف أو التعرف على نوعية الميكروب (المنتجين المختلفة)

باستخدام أجسام مناعية معروفة وذلك من خلال انواع من الأجسام المناعية المرتبطة

Floresceneses

بمادة مشعة أو إنزيم أو مادة عاكسة

تعتمد وتتطورة هذا الاختبار بداية من عام 1971م، وهو اختبار عالي الحساسية

وغالبا ما يستخدم أي من هذه الأنتيزيمات

Sensitive and accurate

. Alkaline phosphatase –1

Horseradish peroxidase –2

B galactosidase –3

المرتبطة بباجسم مناعية أو الميكروب مضافة الى مادة كروموجينية غير ملونة

تتحول الى مادة ملونة عند الاستخدام بالإضافة ماء

الإوكسيجين

ويتكون اختبار الألبيزا من انتيجين متخصص بجدر الطبق

96 Well plate ثم تضاف

الالتهاب الغير متخصص بال插افة nonspecific

blocking buffer
لاجسام المناعية ثم الأجسام المناعية الملتزمة بالإنزيم، حيث يتم تغيير اللون.
(Substrate + عينة + مادة كاشفة (إنزيم +
. Materials and preparation وهذا الإختبار يحتاج إلى
ويعتمد بروتوكول هذا الاختبار على :
1- تحضير الانتييجين (وتركيزه).
2- معايرة الانتييجين (للتحديد الكمية التي يمكن استخدامها في هذا الاختبار ويمكن استخدام التخفيفات 1-50 أو 1-1000).

Negative and positive control sera 3- سيرم الضوابل (سالب وموجب)
HRP conjugate 4- معايرة
خطوات التجربة لتحديد نوعية الأجسام المناعية :
1- يتلقى الأنتيجين في الطبقة المتعددة العيون باستخدام الالتصاق السلبي passive adsorption
2- ازالة الأنتيجين الزائد بغسيل الطبقة.
Bovine Serum Albumin 3- سد العيون باستخدام البوليمين العجل (100 ul) في كل عين، ثم يوضع الطبقة في درجة حرارة الفراغ لمدة 2 ساعة.
Blocking bulfer 4- يغسل الطبقة لازالة المادة الزائدة من البوليمين العجل
5- يضاف 100 ميكرون من العينة (السيرو) ووضع الطبقة في درجة حرارة 37م لمدة ساعة.
6- يغسل الطبقة لازالة المادة الزائدة من العينات المضافة.
HRP conjugate 7- يضاف 100 ميكرون من المادة الكاشفة
الدورة التدريبية القومية لتشخيص الأمراض الفيروستية والبكتيرية

8- يوضع الطبق في الحضانة 37° م لمدة ساعة.
9- يغسل الطبق لإزالة المادة الزائدة
10- يقرأ الطبق باستخدام جهاز القياس الضوئي Spectrophotometer باستخدام فلتر 492.

ملحوظة: يجب أن يحتوي الاختبار على عينات ضوابط سالبة وموجبة.
الاختبارات المصلية المستخدمة في تشخيص الأمراض البكتيرية والفيروسية
Agglutination test إختبار التراص
الاختبارات المصلية المستخدمة في تشخيص الامراض البكتيرية والفيروسية

Agglutination test

إعداد
أ.د. مجدي محفوظ عوض
رئيس بحوث ورئيس قسم بحوث الامصال والانتجينات البكتيرية

مقدمة :
الانتجين : أي مادة غريبة تدخل جسد الكائن الحي - يمكن أن تكون غير ضارة مثل بروتين المصل أو ضارة كالبكتيريا والفيروسات.

الاجسام المناعية : هي اجسام بروتينية I.g. يتكون بمعرفة الجهاز المناعي للحيوان عند غزوه بالامصال الغريبة (الانتجينات).

Agglutination التراجع : يسمى أيضا التلازن أو التجمع

تحت ظروف معينة يمكن أن تتجمع الأجسام المناعية على الانتجين المناسبة لها - وليس مع انتجين اخر - تكون تجمع كبير يمكن رؤية بالعين المجردة. ويșترط لكي تتم عملية التجمع ان يكون حجم الانتجين كبير نوعا (بكتيريا كاملة) أما عند استعمال جزيئات صغيرة من البكتيريا فانه يلزم امد صاحب هذ الجزيئات على جزيئات أكبر حجما مثل الاكتكس أو كرات الدم الحمراء المبثة بحامض التنين، وذلك حتى يمكن رؤية التجمع بالعين المجردة. وعند صب الخلايا البكتيرية بالصبغة المناسبة يمكن رؤية التجمع بسهولة أكثر.

ويمكن اجراء اختبار التجمع على لوحة من الإجاج أو البلاستيك أو القيشاني أو في مجموعة من أنابيب وازمان.
1- اختبار التجمع السريع

يستخدم عندما تكون كميات المصل أو الخلايا البكتيرية ضئيلة مثل مستعمرة Bact. colony البكتيرية وتكون الاختبار مناسبًا إذا كان التجمع يحدث في خلال دقائق قليلة - أما عندما يكون مطلوبًا لظهور التجمع التحضين في الحضانتة البكتيرولوجية يصبح هذا الاختبار غير مناسب.

ويلزم لإجراء هذا الاختبار استعمال مصل قوى أو قليل التخفيف مع خلايا بكتيرية مركزية. ونتائج هذا الاختبار تنتمي إلى نوعية الأجسام المناعية وليس كميتها.

ويعتبر اختبار التجمع السريع لتشخيص مرض الأساليا البضي في النواجن أحد الأماكن الناجحة للتطبيق المحلي للاختبار.

وفيما يلي ملخص لطريقة استخدام التحصين الأساليا البضي الالمن (الجامع) في التشخيص السريع للمرض في النواجن.

أنتيجين الأساليا البضي الالمن (الجامع):

يتم تحضير هذا الانتيجين من عئرات سالمونيلا الأساليا البضي القياسية والمتغيرة وتصبغ خلايا الميكروب بصبغة الكرستال فيوليت الزرق.

كيفية الاستعمال:

يتم استخدام هذا الانتيجين لتشخيص المرضي في النواجن - واحسن عمر للاختبار النواجن هو 4 شهور فما فوق ولا يستعمل هذا الانتيجين لاختبارات السالمونيلا في البط أو الرمث. يتم الاختبار بخلط كميات متساوية (نقطة لاتقل عن 30 ميكروليتر) من دم الطائر المفرد اختباره وكذلك الانتيجين - ثم تقرأ النتائج كيمايلي:

1- نتيجة إيجابية: إذا ظهرت التجمعات في خلال دقيقة واحدة من الخلط.
2- نتيجة اشتباه: إذا ظهرت التجمعات في خلال دقيقتين من الخلط.
3- نتيجة سلبية: إذا ظهرت التجمعات بعد دقيقتين من الخلط.
4- نتيجة سلبية: إذا لم تظهر تجمعات بناة.
ملحوظة:

في حالة الاشتباه والحالات السلبية يتم إعادة الاختبار مرة ثانية بعد أسبوعين من تاريخ الاختبار الأول - ولتعتبر الحالة سلبية تمامًا إذا أظهر الفحص السيرولاجي انها سلبية لاختبارات متماثلة بينهما مدة لاتقل عن 15 يومًا.

طريقة حفظ المستحضر:

* يحفظ في ثلاجة عند 2-4°C.

Tube Agg. Test: اختبار التجمع الأنبوب:

يستخدم لبيان كمية الأجسام المناعية النوعية المتواجدة في المصل لتحديد عما إذا كانت هذه الكمية كبيرة ناتجة من عدوى ميكروبية مسببة للمرض أو كمية صغيرة ناتجة من عدوى بسيطة لميكروب المرض أو ميكروبيات مشابهة.

يكون الاختبار بعمل عدة تخفيضات من المصل المراد معرفة نوع وكمية الأجسام المناعية المتواجدة ثم خلطها بكمية من الأنتيجينات المعروفة نوعية ثم التحضير لمدة مناسبة - وتقرأ النتائج تحديد أعلى تخفيض من المصل (Titre) أعطى نتيجة تجمع إيجابية - وظهور التجمع في التخفيضات العالية للمصل مؤشر على زيادة كمية الأجسام المناعية في المصل الإصلي مما يعني شدة المرض أو تواجده لفترة طويلة.

ويعتبر اختبار التجميع الأنبوبي TAT لتشخيص مرض البروسيليا الماشية أحد الامثلة الكلاسيكية للتطبيق العملي للاختبار.

ويفما يلي ملخص لطريقة استخراج الأجسام المتفاعلة في اختبار التجميع الأنبوبية TAT لتشخيص مرض الإجهاض المعدي في الماشية والاغناه.

إنتاج البروسيليا لاختبار الأنبوب

(انظر لصفحة الملحقية.)
اختبار الانتشار المناعي في هلامة الأجار
Agar gel Immuno - diffusion

يعتبر من أكثر الاختبارات الترسبية الحساسية ويُشترط أن يكون Ppt. tests الأنتاج ذو جزيئات صغيرة مثل سموم أو مستخلصات البكتيريا الذاتية أو الفيروسات. يتم إجراء هذا الاختبار في أتربة إختبار صغيرة 5 سم x 2 سم وذلك بتحضير ثلاثة كميات من الأجار بتركيز 6٪.

تختلط الكمية الأولى بالاتنجن والثانية تخلط بالخلوص المحتوى على الأجسام المناعية المراد اختبارها وتنرك الكمية الثالثة من الأجار كما هي بدون أي إضافات.

توضع كمية الأجسام المحتوى على الأجسام المناعية أولا في كل أنبوبا ثم يترك ليجف ثم يضاف الأجسام الخالية من أي إضافات ويترك ليجف ثم يضاف الأجسام المحتوى على الانتجين المعروف.

وتترك الأتربة لفترة كافية لانتشار الأجسام المناعية والانتجين إلى طبقة الأجسام الخالي - في حالة تتناوب نوعية الانتجين مع نوعية الأجسام المناعية تظهر خطوط واضحة عند منطقة التماس مظهره نواة من الاندماج يظهر في صورة خطوط ترسبية ppt. lines

ويستعمل هذا الاختبار لتحديد مكونات البكتيريا المختلفة وتشخيص بعض الأمراض الفيروسية والفطيرية.
انتجن البروسيلا لاختبار الأنباب

التركيب: يحضر هذا الانتجن من عتار هوائية لميكروب البروسيلا (عثرة رقم 99) ورطاق في محلل فسيولوجي ويتم معاييره باستعمال مصل قياسي عالمي (ISABS).

العوبة: عبارة زجاجة سعة 100 سم3 من الانتجن المركز المعاير.

دواعي الاستعمال: يستخدم في التشخيص السيولوجي لمرض البروسيلا باجراء اختبار التجمع المصل في الأنباب.

طريقة الاستعمال: يخفف الانتجن كما هو موضح على اللاصق بواسطة محلل ملع فسيولوجي معقم (Phenol Saline) وذلك قبل اجراء الاختبار مباشرة حتى لا يحدث تحلل لخلايا الانتجن ويتم اجراء الاختبار كالاتي:

1- تجهز خمسة أنابيب وازرحان لكل عينه سيرم تحت الاختبار بوضع 0.8 سم3 محلل ملع طبيعي مضاد اليه (5٪ فينول) في الأنبوبه الأولى ثم 5 سم3 من نفس المحلول في باقي الأنباب.

2- يضيف 2 سم3 من السيرم تحت الاختبار للانبوه الأولى ويرج جيدا ثم ينقل 5 سم3 من هذا الخليط إلى الأنبوبه الثانية ويرج جيدا ثم ينقل 5 سم3 إلى الأنبوبه الثالثة وهكذا ... إلى الأنبوبه الاخيرة ثم يطرح 5 سم3 خارجا من الأنبوبه الاخيرة بعد الرج. وبهذه الطريقة يصبح السيرم مخففا بنسبة 1/5.

3- يضاف لكل أنبوه 5 سم3 من الانتجن (وذلك بعد تخفيضه طبقا للتعليمات المكتوبة على الزجاجة) وهذا يعني تخفيض نهائي في كل أنبوه كالاتي 1/10، 1/20، 1/40 وهمكا ...

4- تحضن الأنباب في حضانة بكتريولوجي لمدة 24 ساعة عند درجة حرارة 37°م وتقرأ النتائج كالاتي:

درجة التجمع تحدد بقراءة درجة الوضوح قبل هز الأنباب – وتعتبر النتيجة إيجابية.
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

100% (4+) إذا حدث تجمع كامل بالانتيبيوتيك، وبالتالي رسب كامل المادة المجمعة - أما النتيجة 75% (3+) إذا حدث تجمع واضح وترسب واضح - أما النتيجة 50% (2+) إذا حدث بعض الترسب – والنتيجة 25% ترسب أقل. أما النتيجة السلبية (–) فتعني تعكر كامل السائل في الاتجاه قبل هزها وكذلك عدم وضوح تجمع.

ويؤثر أعلى تخفيف للسيرم مظهما 50% تجمع (يُعني 50% درجة وضوح) أو أكثر titre of the serum أو عيار السيرم end-point كنقطة نهاية.

ولاهمية 50% نقطة نهاية تستعمل أنبوبيه لمقارنة درجة الوضوح بوضع فيها 0.75 سم 3 محلول ملحي بالفينول مع 0.25 سم 3 انتج مخفف ويستعمل للمقارنة أيضا انتجين قياسي لعطاء 50% تجمع مع تخفيف سيرم قياسي 1/500 سيرم قياسي عالمي.

تقييم النتائج كالتالي:

1- 50% تجمع عند تخفيف 1/40 سيرم أو أعلى يعني أن الحيوان مصاب بالمرض.

2- تجمع عند تخفيف 1/20 يعني أن الحالة مشكوك في إصابتها بالمرض.

ملحوظة:

لاختبار مصل الأغناط والماعز يراعي استعمال 5% محلول ملحي مضافا إليه 5% فينول لتخفيض كل من السيرم والانتجين.

الاحتياطات:

1- ترجي الزجاجة جيدا قبل الاستخدام.

2- يخفف الانتجين قبل الاستعمال مباشرة كما هو موضح على الالساق.

3- يتم تخفيف الانتجين يوميا ولايحفظ البؤس التالي.

4- يفضل استخدام مصل إيجابي وسليبي معروف للتأكد من فاعليه الانتجين عند اجراء الاختبار.

الحفظ: يراعى عدم تجمد المستحضر عند الحفظ، ويحفظ عند درجة 4 إلى 6 م.
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

انتجي بروسيلا الروزنجلال

Rose Bengal Brucella Antigen

يعتبر انتجي بروسيلا الروزنجلال أحد أنتجيئات البروسيلا المخصصة لإجراء الاختبارات السريعة لتشخيص مرض البروسيلا.

والانتجي يعمل عند درجة حموضة 3.65 وبذلك يكون له القدرة على تثبيط بعض IgM الإجسام المناعية من نوع IgM المتواجدة في المصل، حيث أن تواجد في الامصال المراد اختبارها يعني نتائج زائفة لأنها تحمل اجسام مناعية أخرى شبيهة بالاجسام المناعية الخاصة بالبروسيلا وذلك فإنه عند استعمال انتجي الروزنجلال يكون تفاعلهما بين خلايا البروسيلا المتواجدة في الانتجج والإجسام المناعية المتواجدة في وبدالاً يعتبر اختبار

Highly specific IgG وهي اجسام مناعية عالية النوعية الروزنجلال أكثر نوعية وأقل حساسية بالمقارنة بنتائج اختبار البروسيلا الحمضي (البابا) حيث أن درجة حموضة انتجي البابا 3.8 تتعلق فرصة لبقاء نسبة كبيرة من الأجسام المناعية والتي تظهر عند بداية المدوى بالمرض، وبذلك تكون نتائج الاختبار الأخير أكثر حساسية وأقل نوعية.

أما بالنسبة لانتجي البروسيلا الريفانول يعتبر أكثر انتجيئات البروسيلا بعضي نتائج IgM نوعية عالية. Highly specific حيث أنه يتم أولاً ترسب الأجسام المناعية في المصل المراد اختباره لاستعمال محلول الريفانول ثم يفحص المصل بدون الأجسام IgM مناعية حيث يجرى التعرف على الأجسام المناعية من نوع IgG وهي إجسام مناعية عالية النوعية.

النتائج الإيجابية لهذا الاختبار تعتبر مؤكدة بالنسبة لتوالد إجسام مناعية نوعية للبروسيلا، وفيما يلي تفاصيل أجراء اختبار انتجي بروسيلا الروزنجلال وكيفية قراءة النتائج.

114
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

انتشار بينروسيل الأوزونجال

التركيب:

ينحضر هذا المنتج من عناصر هواضية لميكروب البروسيل أوزونجال (عنة رقم 99).
ويكون بصبغة الأوزونجال الحمراء ويطلق في محلول ثابت بدرجة حرارة 3.65.

العبوة:

D.U. زجاجة سعة 20 سم3 تحتوي على 600 وحدة تشخيصية.

طريقة الاستعمال:

يتم استخدام هذا المنتج للتشخيص السريع لمرض البروسيل

buffered plate agglutination

* يعمل اختبار التجمع المعملي السريع وهو اختبار سريع وبسيط وسهل القراءة. يتم تصميم هذا الاختبار ليعمل عند درجة حرارة 3.8 - حيث أن درجة حرارة المنتج 3.65 تساعد علي تجمع IgG ووالذى يعتبر هذا الاختبار أكثر

 nouveعية وأقل حساسية بالمقارنة بنتائج اختبار انتجنن البروسيل الحمضي المتوازن

BAPA

وتم اختبار كالاتي: نقطة من المنتج (0.3 سم3) يتم مزجها جيدا بكمية

متساوية من المصل المراد فحصه (0.3 سم3) على بلاط قياسي أو الكارت المخصص.

لاذك يتم المزج والبه لدالة 4 دقائق وتقرأ النتائج كالاتي:

- لا يوجد تجمع
- تجمع ضعيف
- تجمع إيجابي
- تجمع عكسي
- تجمع متواضع
- تجمع واضح

لاذك يتم مزج والبه لدالة 4 دقائق وتقرأ النتائج كالاتي:

النتيجة سلبية (-)
النتيجة إيجابية (+)
النتيجة إيجابية (++)
النتيجة إيجابية (+++)
النتيجة إيجابية (++++)

النتيجة إيجابية (****)
الاحتياطات:

1- يجب إجراء الاختبار في مكان خالي من الاتربة والغبار.

2- ترج الزجاجة جيدا قبل الاستخدام.

3- يتم إجراء الاختبار عندما تكون درجة حرارة الانتاجين والمصل المراد فحصه مقارنة بدرجة حرارة الغرفة.

4- النتائج تقرأ في خلال 4 دقائق والنتائج التي تظهر بعد مدة أطول لا ينطوي عليها.

5- يفضل استخدام مصل إيجابي وسلبي معروف للتأكد من فعالية الانتاج عند إجراء الاختبار.

الحفظ:

يراعى عدم تجمد المستحضر عند الحفظ - ويحفظ عند درجة 4 إلى 8 درجة مئوية.
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

1 - الطريقة السريعة (Rapid Method)

* توجد طريقتين لإجراء اختبار التلزاز الدموي:

(Qualitative Method

* تحدد وجود التلزاز أو عدم وجوده.

* تجري على شريحة زجاجية وذلك بوضع نقطة من كرات الدم الحمراء المخففة

(10%) على نقطة من الانتج العين المراد اختباره.

* تظهر النتيجة في خلال ثانية وبتكون على شكل نقط صغيرة من التجمع الدموي

(نجلط).

2 - طريقة الإطباق الميكرونية:

* تستخدم هذه الطريقة لتحديد قوة الفيروس التلزازية.

* المواد المستخدمة لهذه الطريقة هي كالآتي:

- أطباق باستيكية 96 عين ذات قاع U أو V

- محلول فسيولوجي متعادل 7.2

- كرات الدم الحمراء.

(يتم تجميع الدم على مادة مانعة للنجلط مثل 4% سروب سوديوم، يتم غسيل الدم ثلاث مرات متتالية عن طريق دورانه في جهاز الطرد المركزي على سرعة 1000 بورة / دقيقة لمدة 10 دقائق. يختفي الدم 5% ... 1% عند الاستعمال.

طريقة إجراء الاختبار:

* يوضع محلول الملع بكمية 25 ميكرن في كل العين.

- يوضع 25 ميكرن من الفيروس المراد اختباره في العين الأولى ويخلط جيدا ثم

- يؤخذ منه 25 ميكرن وتنقل إلى العين التي تليها ويكرر التخليف لتشمل على

1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024, 1/2048, 1/4096

(كنترون).
- يوزع الدم المخفف 50 ميكرون في كل الورق ويترك الطلقة في الثلاجة (+4)
- يتم قراءة الطبقة عند ظهور نتيجة الكنترول
- تكون النتيجة الإيجابية بالحصول على أعلى تخفيف يعمل على تلزن الدم بالكامل
وهي تكون على شكل الدانتيل في حين تكون النتيجة السلبية على هيئة زرار(HAU)
- نتيجة ترسيب كرات الدم الحمراء.

Figure 2.4. Diagram of a sample haemagglutination assay. Serial doubling dilutions of virus show complete agglutination end point at 1:512 and 50% end point at 1:1024.
اختبار منع التلازيم الدموي

Haemagglutination Inhibition Test (HI)

 يعتبر هذا الاختبار من الاختبارات السينولوجية المستخدمة لقياس مستوى الأجسام المناعية الموجودة في السيرم وذلك باقياً عملياً التلازيم لكرات الدم الحمراء.

المواد المطلوبة لإجراء الاختبار:
1- أطلبي按下ستك 96 عين على شكل V أو U.
2- انتجج معروف قوة تلزيز (يستخدم 4 وحدة).
3- كرات الدم الحمراء (تركيزه 5% — 1%).
4- محلل ملح فسيولوجي معتاد (كلوريت صوديوم 8.5%) (الأس الهيدروجيني 7.2).
5- عينات السيرم المراد اجراء الاختبار عليها ويحصل عليها بقصد الدم من القلب أو الجناح، تترك حتى يتبجع ثم يفصل السيرم للاختبار.

طريقة اجراء الاختبار:
1- بوزع محلل الملح 25 ميكرون في كل العين.
2- توقيع كل عينة سيرم في العين الأولى وشلل جيداً مع محلل الملح ثم ينقل 25 ميكرون الى العين التي تليها ويستمر التخفيف 1/2, 1/4, 1/16, 1/32 ونترك العين الأخيرة كعينة ضابطة (كنتروال).
3- بوزع 25 ميكرون من الانتاجن (4وحدة) في كل العين ماعدا الأخيرة وترتك لمدة 30 دقيقة في درجة حرارة الغرفة.
4- يضاف 50 ميكرون من الدم المخفف في كل العين ويترك في الثلاجة حتى تظهر نتيجة الكنتروال.
5- تتسبب كرات الدم على شكل زرار في النتيجة الإيجابية Ve + بينما تأخذ شكل الدانتيل في النتيجة السلبية Ve -.
6- تدل النتيجة على الحالة المناعية للقطيع، مثل ذلك في مرض التيكاسيل تعتبر النتيجة 2 فاكثر حالة مناعية جيدة للقطيع أما أقل من ذلك فننصح باعادة التحصين مرة أخرى.
اختبارات الحساسية
لتشخيص بعض الأمراض الجرثومية
اختبارات الحساسية

لتشخيص بعض الأمراض الجرثومية

إعداد

الاستاذ الدكتور دانيال جندي ميخائيل
رئيس قسم بحوث المواد المشخصة البكتيرية
بمعهد بحوث الإصصال واللقاحات البيطرية

اختبارات الحساسية

عند حقن أي بروتين غريب على الجسم (انتجين) يقابل برد فعل مضاد من الجسم

* ليحمي نفسه ويقاوم الخطر. وتتوقف هذه المقاومة على عدة عوامل أهمها:

 * الحالة العامة للجسم.
 * مدى خبرة الجهاز المناعي بنوعية البروتين أو الانتجين الغريب.

وتنقسم هذه المناعة إلى نوعين رئيسيين هما:

 * المناعة الخلوية.
 * المناعة المصلية.

والنسبة لاختبارات الحساسية فإن الجسم يسرع في إرسال الخلايا الدفاعية إلى
مكان الحقن ويحدث نوع من الالتهاب كرد فعل مضاد يمكن قياسه بإحدى أو بعض
العلامات الرئيسية الخمس للالتهاب وهي:

 * الاحمرار.
 * الورم.
 * الحرارة (السخونة).
 * الاشتباطات (الإرديما).
 * فقدان الحركة أو قلتها.
فقد استغلت هذه الظاهرة الحيوية للكشف عن بعض الأمراض الجرثومية فاكحً
الميكروب الميت أو مشتق منه في سمك الجلد ينتج رد فعل يميز بين الكائن الحي السليم
والمريض.

اختبار السلين

منذ أن اكتشف روبرت كوك الميكروب المسبب لمرض السل (1882م) بدأ عصر
جديد في تشخيص وعلاج المرض. وعندما زرع الميكروب على وسط غذائي مناسب حصل
على سائل ينتجه اللون شفاف أسماه التيوبيركلين (السلين) ووجد أنه عند حققه بالجلد ينتج
عنده رد فعل في حالة الإصابة بющимكروب السل فقط.

ومر هذا المستحضر بخطوات لتحسينه إلى أن وجد أن المادة الفعالة التي تسبب
رد الفعل في البروتين المشتق من الميكروب والذي يتكون أثناء نمو الميكروب على وسط
غذائي سائل كذلك سمى بـ بـ. د. وهي الحروف الأولى لكلمات الإنجليزية وتعني بروتين
مشتق منقى.

ويحضر الآن البروتين النقي في صورة محلول بقر مذاب فيه الـ بـ. د. ومضاف
اليه الجلسرول والفينول بسب ميغبة ثم يختبر قبل طرحه للإستخدام بعدة اختبارات
لضمان خلوه من الجراحيات واحتوائه على النسبة المقدرة من البروتين الفعال وكذلك كفاءته
للاحداث رد فعل في خنزير غينيا كنموذج لرد الفعل في الحيوانات الكبيرة وينتج الـ
بـ. د. على (أو مادة السلين) في إحدى الصور الآتية:

أ- السلين النقي للماشية:

* المحضر من العمرة الأدمية للسل ويصلح لتشخيص السل البقرى وتركيزه 2 مجم/
1 سم3.

* المحضر من العمرة البقرية للسل وتركيزه 1 مجم / 1 سم3.

ب- السلين النقي للطيور:

المحضر من العمرة الطيرية للسل وتركيزه 0.5 مجم / 1 سم3.
المกระเปرة

الاختبار وأهميته

يعتبر هذا الاختبار من أفضل الوسائل وأبسطها على المستوى العالمي لتشخيص الإصابة بмиكروب السل في الحيوان.

اختبار الحقن المفرد في الجلد

يعتبر الاختبار المفرد في الجلد هو الأساس لتشخيص ومكافحة مرض السل في الماشية ويشمل استعمال حالات الآتية:

1- عند إجراء اختبار عام لمكافحة مرض السل بين الماشية.
2- لاختبار المزارع التي بها تجمعات كبيرة من الماشية لم يسبق اختبارها من قبل على أن يستمر اختبارها بهذه الطريقة طالما كانت نتائج الصفة التشريحية التي تجري على الحالات الإيجابية منها مؤيدة لنتائج الاختبارات بثبت اصابتها بمرض السل (عند ظهور حالات رد فعل لانوغي بالقطيع).
3- لاختبار الحالات الفردية التي يراد فحصها لتشخيص مرض السل بها.
4- لاختبار الحالات الفردية التي تشتري وذلك قبل اضافتها إلى القطعان المختبرة.

مقدار الجرعة:

** 0.1 سم لجميع المواشي المختلفة الأحجام والإعمار.

طريقة إجراء الاختبار

1- موقع الحقن: يفضل منتصف البتة الأوسط في الرقبة.
2- يحقق الشعر في جزء من هذه المنطقة على شكل دائرة قطرها 5 سم تقريبا.
3- تظهر هذه المنطقة بقطعة من القطن المغموض في الكحول وترتك لتجف.
4- تؤخذ ثني من الجلد في المنطقة المحيطة بين السباب والإبهام ويفاس سمكها بقدمية خاصة وتسجيل القراءة.
الدورة التدريبية القومية لتشخيص الأمراض الفيروسية والبكتيرية

5- طريقة الحقن بواسطة حقنة مدررة ذات ضابط سعتها 1 سم ولها أبرة قصيرة متوسطة السمك تجري عملية الحقن وذلك بغرس الأبرة في ثني الجلد المطبوخ حتى يصل طرفها إلى الطبقة الداخلية من التسنيم الجلدي ثم يحقن مقدار 0.1 سم 3 من مادة السليمن. ويجتنب الامار عادة أن بعض الضغط أثناء الحقن مماثل على أن الحقن تم في طبقات الجلد وليس تحت الجلد والتأكد من صحة الحقن في الجلد تمر الأصابع في مكان الحقن حيث يمكن الشعور ببوم في حجم الحزمة إذا كان الحقن صحيحا وفي حالة الشك في صحة الحقن يحقن الحيوان مرة ثانية يفضل إجراء الحقنة الثانية في الجهة الأخرى من الرقبة.

وفي موضع مماثل للوضع السابق.

6- قراءة نتائج الحقن: تقرأ نتيجة الاختبار بعد مضي 72 ساعة من الحقن باعادة قياس سمك الجلد بواسطة القدمة ويسجل مقداره للمقارنة بالقراءة الأولى التي أخذت قبل الحقن ومن ذلك يتضح مقدار الزيادة في سمك الجلد وتكون نتائج الاختبار كالاتي:

- الحالات التي يكون فيها مقدار الزيادة في سمك الجلد أقل من 3 مم تعتبر سلبية.

- الحالات التي يكون فيها مقدار الزيادة في سمك الجلد 4 مم فاكثر تعتبر إيجابية.

- الحالات التي يكون فيها مقدار الزيادة في سمك الجلد من 3 إلى أقل من 4 مم وكذلك الحالات التي تكون فيها الزيادة أقل من 3 مم و يكون الورم من النوع الأولي المحسس تعتبر مشتبه فيها.

إعادة الاختبار

الموافق المشتبه فيها لا يصبح إعادة اختبارها قبل مضي ثلاثين يوما على الأقل من الاختبار الأول والافضل أن يعاد الاختبار بعد شهرين ويراعى أن يكون الحقن بالجهة المضادة بالرقبة لا في نفس الجهة التي سبق اجراء الاختبار الأول بها.
الطريقة حفظ السيلين ومدة استعماله

1- يحفظ السيلين بالثلجة على درجة 4 مئوية وتستمر صلابته للاستخدام لمدة
تسعة شهور من تاريخ تحضيره.

2- زجالة أو أمبوة السيلين التي تفتح تستعمل في نفس اليوم وما يتبقى بها من
جوع تدعم ولذا يطلب السيلين في العبيرة المناسبة للاستخدام.

بعض الملاحظات على الاختبار

حيانا تظهر حالات زائفة سواء إيجابية أو سلبية لاختبار السيلين .. الحالات
الإيجابية الزائفة وهي التي تكون إيجابية للاختبار ولكن ذبحها وفحصها لاتوجد بها آفات
مرضية للسل وقد يرجع هذا الى :

1- عدوى مبكرة لم يمكن معها تكون دربت باللغد الليفياوية أو الأنسجة.

2- الحساسية نتيجة العدوى بالعنقودية الأدمية فيكون الحيوان إيجابيا للاختبار دون
وجود آفات ويمكن أن يحدث هذا لوجود واحد العاملين المصاب بالدرين الأدمي
او القرب من مصدر تلوث بالعنقودية الأدمية مثل مستشفيات الصدر.

3- الحساسية نتيجة للعدوى بالعوامل غير الفياسية الميكروب.

4- الحساسية نتيجة للعدوى بعثرة بونز (جونس).

5- الحساسية نتيجة بعض الجراثيم المشابهة مثل الكوريتي ، التوكار رديا.

6- الإصابة بالبرودة الكبدية (الفاشيولا).

والتنقل من الحالات الإيجابية الزائفة يجري اختبار الجلد المفرز المقارن كما
سيأتي ذكره بعد.
رضا ونیمایی

مهندساً

رضا ونیمایی رهبر اتحادیه مهندسان مهندسین ریاضی و پیشرفته در تهران

رضا ونیمایی

در جلسه‌ای که در تهران برگزار شد، خصوصاً در فضایی که مربوط به مهندسین ریاضی و پیشرفته می‌باشد، آنها به لحاظ آمار و تعداد روزانه بهبود می‌یافت. در این جلسه، بحث‌ها و بحث‌هایی دربارهٔ اینکه آیا آنها باید بهترین روش‌های جهت بهبود باید در این زمینه اجرا شوند یا آیا بهترین روش‌های جهت بهبود این شرایط شکستگی می‌گیرند، بحث شد.

برای اینکه بتوانیم بهترین روش‌های جهت بهبود باید در این زمینه اجرا شوند، نیاز به تحقیقات و بحث‌هایی که با لحاظ آمار و تعداد روزانه بهبود می‌یافت، بحث شد.

رضا ونیمایی

در جلسه‌ای که در تهران برگزار شد، خصوصاً در فضایی که مربوط به مهندسین ریاضی و پیشرفته می‌باشد، آنها به لحاظ آمار و تعداد روزانه بهبود می‌یافت. در این جلسه، بحث‌ها و بحث‌هایی دربارهٔ اینکه آیا آنها باید بهترین روش‌های جهت بهبود باید در این زمینه اجرا شوند یا آیا بهترین روش‌های جهت بهبود این شرایط شکستگی می‌گیرند، بحث شد.

برای اینکه بتوانیم بهترین روش‌های جهت بهبود باید در این زمینه اجرا شوند، نیاز به تحقیقات و بحث‌هایی که با لحاظ آمار و تعداد روزانه بهبود می‌یافت، بحث شد.

رضا ونیمایی

در جلسه‌ای که در تهران برگزار شد، خصوصاً در فضایی که مربوط به مهندسین ریاضی و پیشرفته می‌باشد، آنها به لحاظ آمار و تعداد روزانه بهبود می‌یافت. در این جلسه، بحث‌ها و بحث‌هایی دربارهٔ اینکه آیا آنها باید بهترین روش‌های جهت بهبود باید در این زمینه اجرا شوند یا آیا بهترین روش‌های جهت بهبود این شرایط شکستگی می‌گیرند، بحث شد.

برای اینکه بتوانیم بهترین روش‌های جهت بهبود باید در این زمینه اجرا شوند، نیاز به تحقیقات و بحث‌هایی که با لحاظ آمار و تعداد روزانه بهبود می‌یافت، بحث شد.
حفل الافتتاح
<table>
<thead>
<tr>
<th>الدولة</th>
<th>الاسم</th>
</tr>
</thead>
<tbody>
<tr>
<td>الأردن</td>
<td>1- سامي طلال العدوان</td>
</tr>
<tr>
<td>الإمارات</td>
<td>2- علي عبدالهال عرب</td>
</tr>
<tr>
<td>البحرين</td>
<td>3- عباس عبدالله الحايك</td>
</tr>
<tr>
<td>الجزائر</td>
<td>4- أمال حبول</td>
</tr>
<tr>
<td>السعودية</td>
<td>5- خالد بن علي آل جبر</td>
</tr>
<tr>
<td>السودان</td>
<td>6- ماجد بديع</td>
</tr>
<tr>
<td>السودان</td>
<td>7- عصام عبدالمجيد</td>
</tr>
<tr>
<td>السودان</td>
<td>8- الفاتح أحمد عبدالرحمن</td>
</tr>
<tr>
<td>سرية</td>
<td>9- غسان مجر</td>
</tr>
<tr>
<td>العراق</td>
<td>10- عماد عبدالحسين الزبيدي</td>
</tr>
<tr>
<td>العراق</td>
<td>11- حارث محمد سليم صالح</td>
</tr>
<tr>
<td>سلطنة عمان</td>
<td>12- علي عبدالله بن محمد السحمي</td>
</tr>
<tr>
<td>الكويت</td>
<td>13- تهاني علي قاسم</td>
</tr>
<tr>
<td>لبنان</td>
<td>14- غازي الحكيم</td>
</tr>
<tr>
<td>لبنان</td>
<td>15- محمد سكرية</td>
</tr>
<tr>
<td>ليبيا</td>
<td>16- أسامة عثمان يشير</td>
</tr>
<tr>
<td>المغرب</td>
<td>17- الحسن الصالح</td>
</tr>
<tr>
<td>مصر</td>
<td>18- محمد مكين مصطفى</td>
</tr>
<tr>
<td>مصر</td>
<td>19- عبدالخالق محمد عبدالمجيد</td>
</tr>
<tr>
<td>مصر</td>
<td>20- ممتاز عبدالهادي عفيفي</td>
</tr>
<tr>
<td>مصر</td>
<td>21- فاطمة الزهراء محمد شعبش</td>
</tr>
<tr>
<td>موريتانيا</td>
<td>22- الشيخ معاي والد أمين</td>
</tr>
<tr>
<td>اليمن</td>
<td>23- محمد بيجي حمید</td>
</tr>
<tr>
<td></td>
<td>24- أحمد علي مصطفى</td>
</tr>
</tbody>
</table>

مشرف الدورة وممثل المنظمة